Number Theory
Divisibility: Definition \& Notation

1. a divides b
2. a is a divisor of b
3. b is a multiple of a
$\exists m \in \mathbb{Z}, b=m a \quad$ (definition)
4. $a \mid b$ (notation)

If a does not divide b ($a \nmid b$)
In general,
[unique representation] $b=a \cdot q+r \quad$ where $o \leqslant r<a$

$$
(r=0 \Rightarrow a \mid b)
$$

q: quotient
r : remainder, $r \in\{0,1,2, \ldots, a-1\}$
Prove uniqueness: (By contradiction)
Suppose $b=a q_{1}+r_{1}=a q_{2}+r_{2} \quad\left(r_{2}>r_{1}\right)$
what can we say about $r_{2}-r_{1}$?

$$
0<r_{2}-r_{1}<a
$$

$$
\begin{aligned}
r_{2} & =b-a q_{2} \\
r_{1} & =b-a q_{1} \\
r_{2}-r_{1} & =\left(b-a q_{2}\right)-\left(b-a q_{1}\right) \\
& =a\left(q_{1}-q_{2}\right)
\end{aligned}
$$

Now, $\quad 0<a\left(q_{1}-q_{2}\right)<a$

$$
0<q_{1}-q_{2}<1 \text {, a contradiction. }
$$

because these is no integer strictly between 0 and 1.

Given two integers a and b, the greatest Common divisor of a and b

$$
\operatorname{gcd}(a, b)
$$

is a divisor of a and a divisor of b and it's the largest such integer.

Well defined Concept:

- 1 is a common divisor, so there is one
- Common divisor $\leqslant \min (a, b)$, so there must be a largest.

Example $a=300 \quad b=18 \quad$ what is $\operatorname{gcd}(300,18)$ List divisors of 300 and 18 and check them

$$
\begin{aligned}
& D_{300}=\{1,2,3,4,5,6,10,12,15,20,25,30,50,60,75,100,150,300\} \\
& D_{18}=\{1,2,3,6,9,18\}
\end{aligned}
$$

Bad: Requires going through all numbers $1,2,3, \ldots, n=300$

Example: Factor into primes

$$
\begin{aligned}
300 & =2^{2} \cdot 3^{1} \cdot 5^{2} \\
18 & =2^{1} \cdot 3^{2} \cdot 5^{0}
\end{aligned}
$$

Pick as many prime factors as possible to make the longest divisor of bots

Pick the smallest power for

$$
2^{\prime} \cdot 3^{\prime} \cdot 5^{0}=6
$$ each prime

Bad: Not easy to factor into primes in general.
Side Remark: What if we pick the largest power for each prime?

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \\
& 2^{2} \cdot 3^{2} \cdot 5^{2}=900=\operatorname{lcm}(300,18)
\end{aligned}
$$

least Common Multiple.

Fact 1: $\operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b)=a \times b$
Fact 2: $d|a \wedge d| b \Leftrightarrow d \mid \operatorname{gcd}(a, b)$
Fact 3: $a|m \wedge b| m \Leftrightarrow \operatorname{lcm}(a, b) \mid m$

The \Leftarrow direction is easy to prove in both cases.

- $d \mid \operatorname{gcd}(a, b)$ and $\operatorname{gcd}(a, b)|a \Rightarrow d| a$
(same for b)
- m is mult. of $\operatorname{lcm}(a, b)$ and $\operatorname{lcm}(a, b)$ is mult. of a $\Rightarrow m$ is mult. of a (same for b)

Here's what we will prove:

$$
\begin{gathered}
a=\underbrace{b \cdot q}_{\text {quotient }}+r \quad 0 \leqslant r<b \\
d \mid a \wedge \text { remainder of } a / b \\
d|b \Leftrightarrow d| b \wedge d \mid r
\end{gathered}
$$

direction

$$
\left.\begin{aligned}
& \stackrel{\text { erection }}{\Longrightarrow}: a=m d \\
& b=n d
\end{aligned} \right\rvert\, \Rightarrow \begin{aligned}
& m d=n d \cdot q+r \\
& r=d(m-n q) \Rightarrow d \mid r
\end{aligned}
$$

direction

- Similar

Conclusion: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$

Euclid's Algorithm for finding $\operatorname{gcd}(a, b) \quad(a \geqslant b)$ Construct sequence (decreasing)

$$
\underbrace{a_{0} a_{1}}_{a} a_{2} \cdots a_{k} \underbrace{a_{k+1}}_{0}
$$

$$
a_{i-2}=a_{i-1} g_{i-1}+\underbrace{a_{i}}
$$

then $a_{k}=\operatorname{gcd}\left(a_{0}, a_{1}\right)$
remainder of $\frac{a_{i-2}}{a_{i-1}}$
Example: 3001812

$$
\begin{array}{cc}
6 & 0 \\
\uparrow & \uparrow \\
\operatorname{gcd}(30918) & \text { stop }
\end{array}
$$

Example: Find $\operatorname{gcd}(100,39)$

$$
\begin{array}{llllllll}
100 & 39 & 22 & 17 & 5 & 2 & 1 & 0 \\
\text { 1 } & 1 \\
& & & & & & & \\
& & & & & & & \\
& & & & 100,39) & \text { stop }
\end{array}
$$

In general: $\operatorname{gcd}\left(a_{0}, a_{1}\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right)=\cdots \cdot=\operatorname{gcd}\left(a_{k-1}, a_{k}\right)$ but $a_{k} \mid a_{k-1}$

Euclidean
So $a_{k}=\operatorname{gcd}\left(a_{k-1}, a_{k}\right)$ Algorithm

Why is this good? 代's fast.

