Definition:
a and b are coprime $\Longleftrightarrow \operatorname{gcd}(a, b)=1$
Conclude:
a and b are coprime $\Leftrightarrow \exists r_{1} s \in \mathbb{Z}$, ar $-b_{s}=1$
\Rightarrow : from Euclidean $\mathrm{Alg}_{\mathrm{g}}$.

$$
\begin{aligned}
\left.\Leftarrow: \quad \begin{array}{rl}
a r-b s=1 \\
d|a \wedge d| b \mid & \Rightarrow \underbrace{m d}_{a} r-\underbrace{n d}_{b} s=1 \\
& \Rightarrow d(m r-n s)=1 \Rightarrow d=1 . \\
& \Rightarrow \operatorname{gcd}(a, b)=1 .
\end{array} . \quad \begin{array}{rl}
m
\end{array}\right)
\end{aligned}
$$

Important feature of coprimes: Inverse

$$
\begin{aligned}
& a r-b s=1 \\
& a r=b s+1
\end{aligned}
$$

"The remainder of the division $a r / b$ is 1 "

$$
a r \equiv 1(\bmod b)
$$

like saying: "if we multiply a by r, we get 1 "

$$
\equiv \text { : congruence. }
$$

r acts like the inverse of a, call it a^{-1}.

Definition : $a \equiv b(\bmod n) \Longleftrightarrow \cdot n \mid a-b$

- a \& b have same
remainder in division by n
\equiv "behaves" like equality, it's an "equivalence relation"
$a \equiv b(\bmod n)$
later.

$$
\begin{gathered}
a \equiv b(\bmod n) \\
c \equiv d(\operatorname{modn}) \\
\frac{a+c \equiv b+d(\bmod n)}{(\text { same with subtraction })}
\end{gathered}
$$

$$
\frac{c \equiv d(\bmod n)}{a \times c \equiv b \times d(\bmod n)}
$$

(move from side to side)

$$
\begin{aligned}
a & \equiv b(\bmod n) \\
b & \equiv b(\bmod n) \\
a-b & \equiv 0(\bmod n)
\end{aligned}
$$

What about division?
$a \equiv b(\bmod n)$
$c \equiv d(\bmod n)$
$\frac{a}{c} \equiv \frac{b}{d}(\bmod n)$? Well, is $\frac{a}{c}$ even an integer?
Example: $n=7$

$$
\begin{aligned}
\frac{2}{3} \equiv & x(\bmod 7) \quad 2 \equiv 3 x(\bmod 7) \\
\frac{3}{2} \equiv & x(\bmod 7) \\
& <? x=5 \\
\frac{2}{3} \times \frac{3}{2} \equiv & 3 \times 5 \equiv 15 \equiv 1(\bmod 7)
\end{aligned}
$$

So why does it work?

$$
x \equiv \frac{2}{3}(\bmod 7) \Rightarrow x \equiv \underbrace{2 \cdot 3^{-1}}_{\substack{\text { inverse } \\ \text { of } 3 \bmod 7}}(\bmod 7)
$$

So x is well defined $\in \mathbb{N}$ if 3^{-1} exists $\bmod 7$.

$$
\begin{aligned}
3.5 & \equiv 1(\bmod 7) \text {, so } 3^{-1}=5 . \\
x & \equiv 2.5(\bmod 7) \\
x & \equiv 3(\bmod 7)
\end{aligned}
$$

So $\frac{2}{3}$ "is" $3(\bmod 7)$.
$\operatorname{gcd}(a, n)=1 \Longleftrightarrow a$ has an inverse $a^{-1} \bmod n$.

$$
\begin{aligned}
& a r-n s=1 \\
& a r=n s+1 \\
& a r \equiv 1(\bmod n)
\end{aligned}
$$

r acts like the inverse of a
simply find r modulo n (bring it to $<n$)
inverse is UNIQVE! why? (see below)
Interesting fact: $\operatorname{gcd}(a, n)=1 \Rightarrow a x \equiv a y(\bmod n)$ (malt. both sides by a^{-1})

$$
\begin{aligned}
a^{-1} \cdot a x & \equiv \underbrace{a^{-1} \cdot a}_{1 \cdot y}(\bmod n) \\
1 \cdot x & \equiv \bmod n) \\
x & \equiv y(\bmod n) \Rightarrow x=y(\text { became } x<n, y<n)
\end{aligned}
$$

So, if $a x \equiv a \underset{w}{y} \equiv 1(\bmod n)$ inverse inverse

$$
\begin{aligned}
& \text { and } \operatorname{gcd}(a, n)=1 \quad \text { (so } a^{-1} \text { exists) } \\
& \text { then } \quad x=y \quad(x<n, y<n)
\end{aligned}
$$

Inverse is unique.

Example: $n=7$

They are all different (a permutation)

This is not generally true ; for instance,

$$
\begin{aligned}
& 2.3 \equiv 6(\bmod 8) \\
& 2.7 \equiv 6(\bmod 8)
\end{aligned}
$$

So $2.3 \equiv 2.7$ but $3 \neq 7$

Application: Solving with modular arithmetics.

$$
\begin{aligned}
13 x & \equiv 2(\bmod 21) \quad \text { Find } x . \\
\underbrace{13^{-1} \cdot 13 x}_{1} & \equiv 13^{-1} \cdot 2(\bmod 21) \\
1 \cdot & \equiv 13^{-1} \cdot 2(\bmod 21)
\end{aligned}
$$

$$
x \equiv 13^{-1} \cdot 2(\bmod 21) \quad \text { Find inverse of } 13 \bmod 21 \text {. }
$$

Inverse of 13 means: $13 \cdot r \equiv 1(\bmod 21)$

$$
\begin{aligned}
& 13 . r=21.5+1 \\
& 13 . r-21 s=1 \quad \text { (do Euclidean alg.) }
\end{aligned}
$$

a	21	13	8	5	3	2	1	0
	1	0	1	-1	2	-3	5	
y	0	1	-1	2	3	5	-8	

$$
\begin{gathered}
21(5)+13(-8)=1 \\
\uparrow \\
r \\
-8 \equiv 13(\bmod 21)
\end{gathered}
$$

$$
x \equiv 13.2 \equiv 26 \equiv 5(\bmod 21)
$$

Try: $13 \times 5=65$

$$
65=21 \times 3+2
$$

Remainder

