Putting the Product rule to work

permutations on n objects Entry? Recall: Think of task for generating one permutation # ways 1. Choose an object for 1st position 2. choose another object for 2nd position n n-1 K. choose another object for Kth postion n-k+11 n. choose another object for not position n(n-1)(n-2) - 1 = nlWe can't permute choices in phases and get same outcome > No overcounting

In how many ways can we seat n people on n chairs? Abstraction S Find a Łask Ło Zgenerate a Seating This is a permutation Sni

 $\sum_{n=1}^{n} \frac{n(n-1)}{2}$ Recall : # pairs on n objects Think of task for generating one pair #ways 2. choose another object n-1 Is order relevant? n(n-1) Left/Right sock : Yes, No overcount $\Rightarrow n(n-1)$ Snake: No, overcount by $2 \Rightarrow \underline{n(n-1)}$ What did we learn? So for, when we talked about pairs ne meant unordered. # ordered pairs = n(n-1). # unordered pairs = $\binom{n}{2} = \frac{n(n-1)}{2}$

Snakes & Ladders on a chest board

		1666	1	141		140	,										
					IJ,											~	
														Ŀ	2	ł) ೧ Լ
		ł															
		Ű,												5	nc	z ŀ	Se
																,	
														dj	L	Le	re
					W.	1									JJ		
			n	=	6	4											
			• •	_	0	ſ											-4
																	*
1					•		2	~	_								
4	•	C	h O	WS	e	2	l	5	gu	a	ге	•	• • •				• - •
									J								
2		_					00)	_	1		0	. .				
2			100	250	2	a	łł	•	Ce) 0	r	2	gu	<u>a</u>	re	••	•
							J V						•				-
$\int $		1		,	h		C		t	5	4						
Ca	-71	U	vc	•	P	er	(1)	m			u	10					
حا		21	01		^	• J		•	۰t	-	<u>_</u>		~				
	101		う		a	۰a	•	g		•	54		e				
21	<u>۲</u>			•	2	2			2		-						
00		u		10	-	ŗ				103	>						
		\sim		r r	~	. 1	\mathbf{F}		<u>/</u>			7					
					S	JVA		. 1)	9		אי	6	ン				
								•	ノ		,						
	6	~			A (10	~			n		n				N
	>	U		a	~1 >	Ŵ	C		=		5	X	-	-	=		7
											V		L	•			-

w many ways can we place one e if head & tail must be on ent colors ? (Assume n is even) #ways ways 1. choose a black square ... n n Z 2. choose a white square 「」 ··· 1/2 n×nz トンク Can we permute the choices and get same outcome? No answer is as before $\frac{n^2}{4}$

Snakes & Ladders on a cheerboard In how many ways can we place one snake if head & tail must be on some color? (Assume n is even) n=64 # ways #ways 1. choose a black square <u>n</u> Z 2. choose diff. black square $-\cdots \left(\frac{n}{2}-1\right)$ り(デー1) n (2-1) Can we permute the choices and get same Can we permute the choices and get same outcome? Yes: outcome ? Yes: テ(デー) $\frac{n}{4}(\frac{n}{2}-1)$ why + ? (See below)

Desch of the following two task generates only parts of total possible outcomes 1. Choose a black square $\frac{n}{2}$ 1. Choose a white square $\frac{n}{2}$ 2. choose diff. black square $\frac{n}{2}$ 2. choose diff. white square $\frac{n}{2}$ Adjust for overcounting $\begin{pmatrix} n \\ 2 \\ -1 \end{pmatrix}$ $\begin{pmatrix} n \\ 2 \\ -1 \end{pmatrix}$ 3+4 Addition rule: $\frac{n}{2}(\frac{n}{2}-1)$

In how many ways can we place two snakes?

As usual, think of a task that generates two snakes

by making choices

ways

2 2 2 3. choose another square 2 2 2 2 3. choose another square n

(n-1)

(n-2)

(n-3)

n(n-1)(n-2)(n-3)

Is there overcounting?

YES !

(a,b,c,d)(a,b,c,d) snake 1 (b,a,c,d)(a,b,c,d) (a,b,d,c) snake 2 (b,a,c,d) (b,a,d,c) (a,b,c,d)(c,d,a,b)(a,b,d,c)(d,c,a,b)(b,a,c,d)(c,d,b,a)(b,a,d,c)(b,a,d,c) Overcounting by 2x2x2=8 Ausever: n(n-i)(n-2)(n-3)

Boys and Girls Given m boys and n girls, in how many ways can we make a couple? # ways 1. choose a person m + nS ZYZ 2. Choose a diff. gender person The number of ways for 2nd phase is not independent of choices in 1st phase ! (product rule does not work here)

Boys and Girls Given m boys and n girls, in how many ways can we make a couple? # ways 1. choose a boy 2. choose a girl m×n Is there arercount ? No, phases cannot be permuted; for instance, phase 1 cannot generate girl

Unordered pairs # pairs of boys: $\binom{M}{2}$ # pairs of girls: $\binom{n}{2}$ $\frac{5}{5}$ # couples: mn $\binom{M+n}{2}$ # pairs : What does the addition rule tell us? $\binom{M}{2} + \binom{n}{2} + mn = \binom{m+n}{2}$ Verify: $\frac{m(m-1)}{2} + \frac{n(n-1)}{2} + mn = \frac{(m+n)(m+n-1)}{2}$

Exercise :

In how many ways can we place one ladder and one snake on a chessboard if the head and tail of the snake must De on different colors ? Hint: Why should we place the make first ?