Putting the Product rule to work
Recall:
\# permutations on n objects

why?
Think of task for generating one permutation

1. Choose an object for $1^{\text {st }}$ position \qquad \#ways
2. choose another object for $2^{\text {nd }}$ position...... $n-1$
k. choose another object for $k^{\text {th }}$ postion $n-k+1$
\vdots
n. choose another object for $n^{\text {th }}$ position.

$$
\frac{1}{n(n-1)(n-2) \cdots 1=n!}
$$

We can't permute choices in phases and get same outcome \Rightarrow No overcounting

In how many ways can we seat n people on n chairs?

Recall:
\# pairs on n objects

$$
\left.\sum^{N}\binom{n}{2}\right\}=\frac{n(n-1)}{2}
$$

Think of task for generating one pair
\# ways

1. Choose an object \qquad n
2. Choose another object \qquad $n-1$

Is order relevant?

$$
n(n-1)
$$

Left/Right sock: Yes, No overcount $\Rightarrow n(n-1)$
Snake: No, overcount by $2 \Rightarrow \frac{n(n-1)}{2}$
What did we learn? So far, when we talked about pairs we meant unordered.

$$
\text { \# ordered pairs }=n(n-1) \text {. \# unordered pairs }=\binom{n}{2}=\frac{n(n-1)}{2}
$$

Snakes \& Ladders on a chessboard
In how many ways can we place one snake if head \& tail must be on different colors? (Assume n is even)

$$
n=64
$$

Can we permute the choices and get same outcome? Yes
overcounting by 2 ,

$$
\text { so answer }=\frac{n}{2} \times \frac{n}{2}=\frac{n^{2}}{4}
$$

Snakes \& Ladders on a cher board
In how many ways can we place one snake if head \& tail must be on same color? (Assume n is even)

$$
n=64
$$

1. Choose a square
2. choose same color square ….. $\frac{n}{2}-1$

Can we permute the choices and get same outcome? Yes:
\#ways

1. choose a black square \qquad
2. choose diff. black square

$$
\frac{\left(\frac{n}{2}-1\right)}{\frac{n}{2}\left(\frac{n}{2}-1\right)}
$$

Can we permute the choices and get same outcome? Yes: $\frac{n}{4}\left(\frac{n}{2}-1\right)$

$$
\text { why } \neq ?
$$

(see below)
\sum Each of the following two task generates only parts of total possible outcomes

Addition rule: $\frac{n}{2}\left(\frac{n}{2}-1\right)$

In how many ways can we place two snakes?
As usual, think of a task that generates two snakes by making choices

Is there overcounting?

$$
Y_{E S} \text { ! }
$$

Overcounting by $2 \times 2 \times 2=8$
Ausever: $\frac{n(n-1)(n-2)(n-3)}{8}$

Boys and Girls
Given m boys and n girls, in how many ways can we make a couple?

1. choose a person
2. choose a diff. gender person \qquad $? 3$
The number of ways for $2^{\text {nd }}$ phase is not independent of choices in $1^{\text {st }}$ phase!
(product rule does not work here)

Boys and Girls
Given m boys and n girls, in how many ways can we make a couple?

1. choose a boy
2. choose a girl
\#ways m

$$
\frac{n}{m_{x} n}
$$

Is there overcount? No, phases cannot be permuted; for instance, phase 1 cannot generate girl

Unordered pairs
$\left.\begin{array}{ll}\text { \# pairs of boys: } & \binom{m}{2} \\ \text { \# pairs of girls: } & \binom{n}{2} \\ \text { \# couples : } & m n\end{array}\right\}-\frac{\vdots}{\omega}$
\# pairs :

$$
\binom{m+n}{2}
$$

What does the addition rule tell us?

$$
\binom{m}{2}+\binom{n}{2}+m n=\binom{m+n}{2}
$$

Verify: $\frac{m(m-1)}{2}+\frac{n(n-1)}{2}+m n=\frac{(m+n)(m+n-1)}{2}$

Exercise:
In how many ways can we place one ladder and one snake on a chessboard if the head and tail of the snake must be on different colors?

Hint: why should we place the snake first?

