

Some examples we have seen so far:

- \# unordered pairs ($k=2$, no order, no repetition)

$$
\binom{n}{2}=\frac{n(n-1)}{2}
$$

- \# ordered pairs ($k=2$, ordered, no repetition)

$$
n(n-1)
$$

- \#permutations ($k=n$, ordered, no repetition)
$n!$ (select n from n with order)
- when $k=1$, the answer is n in all 4 cases (select 1 from n in n ways regardless)

Finding \# K-permutations
Recall:
\# permutations on n objects

Think of task for generating one permutation

1. Choose an object for $1^{\text {st }}$ position
2. choose another object for 2^{n} position $n-1$
K. choose another object for $k^{\text {th }}$ postion $\ldots \ldots \ldots . n-k+1$

$$
n(n-1) \ldots(n-k+1)
$$

We can't permute choices in phases and get same outcome \Rightarrow No overcounting
\# K-permutations

$$
P_{k}^{n}={ }_{n} P_{k}=P(n, k)=\overbrace{n(n-1) \cdots(n-k+1)}^{k}=n^{k}
$$

falling power or falling factorial

- Can we express it in terms of factorials?
- What happens if we multiply \& divide by $(n-k)$!?

$$
\begin{aligned}
\operatorname{Try} & : n(n-1) \cdots(n-k+1) \times \frac{(n-k)!}{(n-k)!} \\
& =\frac{n(n-1) \cdots(n-k+1) \times(n-k)(n-k-1) \cdots 1}{(n-k)!}=\frac{n!}{(n-k)!}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& K=0: \frac{n!}{(n-k)!}=\frac{n!}{(n-0)!}=\frac{n!}{n!}=1 \\
& K=1: \frac{n!}{(n-k)!}=\frac{n!}{(n-1)!}=\frac{n \times(n-1)!}{(n-1)!}=n \\
& \underbrace{k=2:} \frac{n!}{(n-k)!}=\frac{n!}{(n-2)!}=\frac{n_{x}(n-1) \times(n-2)!}{(n-2)!}=n(n-1)
\end{aligned}
$$

ordered pairs

$$
\underbrace{k=n} \frac{n!}{(n-k)!}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{\prod_{i=1}^{\circ} i}=\frac{n!}{1}=n!
$$

permutations

Finding \# K-combinations
Recall :
\# K-permutations on n objects

1. Choose an object for $1^{\text {st }}$ position

2: choose another object for $2^{\text {nd }}$ position $\cdots \cdots . . n n-1$
k. choose another object for $k^{\text {th }}$ postion $\cdots \cdots \cdots \frac{n-k+1}{n!/(n-k)!}$ By how much do we overcount?

Among the possibilities:

$$
\begin{aligned}
& \begin{array}{l}
A \\
A
\end{array} \quad B C \\
& A \\
& \hline
\end{aligned} C \cdot B
$$

In general, k-permutations over count k-combinations by k !
\# k-combinations " n choose k "

$$
\binom{n}{k}={ }_{n} C_{k}=C_{k}^{n}=\frac{n!}{k!(n-k)!}
$$

Examples:

$$
\begin{aligned}
& K=0:\binom{n}{0}=\frac{n!}{0!(n-0)!}=1 \\
& K=1:\binom{n}{1}=\frac{n!}{1!(n-1)!}=n \\
& K=2:\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2} \quad \text { [unordered pairs] } \\
& K=n:\binom{n}{n}=\frac{n!}{n!(n-n)!}=1
\end{aligned}
$$

What if we allow repetition?
Select k from n with order \& repetition \#ways

1. Choose an object for $1^{\text {st }}$ position \qquad n
2. choose an object for $2^{\text {nd }}$ position \qquad
K. choose an object for $k^{\text {th }}$ postion $\frac{n}{n^{k}}$

No overcount

Summary of results

Select k from n	ordered	unordered
no repetition	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{k!(n-k)!}$
repetition	n^{k}	

Examples:
How many 3-letter words can I make if

- Letters cannot repeat

$$
\frac{26!}{(26-3)!}=26 \times 25 \times 24
$$

- Letters can repeat
26^{3} (word size : 3, Alphabet size : 26)

$$
\tau_{k}
$$

$$
\lambda^{\prime}
$$

- Letters cannot repeat but must appear in alphabetical order
This amounts to choosing 3 letters with $\underbrace{\binom{26}{3}}_{\text {why ? }}$

Examples: - How many n bit patterns are there?
Choose a value for each bit from $\{0,1\}$ (repetition allowed)
$2^{n} \quad($ word size: n, Alphabet size: 2$)$

- How many 10 bit patterns have exactly 3 is?
choose 3 bits out of n to make is

$$
\binom{10}{3}
$$

Lesson: Don't be too literal in applying the concepts. The wording of the problem does not necessarily "mimic" the formula.

Examples: While alphabetical implies order, the solution corresponded to unordered selection.

In the n-bit problem, n does not correspond to the " n " in formula n ".

