Sets, subsets, and $\binom{n}{k}$

- A set is an unordered collection of "things" we call elements
- We list them between $\}$ separated by, , like this: $S=\{x, y, z\}=\{z, x, y\}$ (every elem. appears once; otherwise, multiset)
- A set can be infinite (has infinitely many elements) how do we list them? (Later)
- If a set S is finite, the cardinality (size) of S is the number of elements in it, and its denoted by $|s|$

$$
\text { e.g. } S=\{x, y, z\},|S|=3
$$

Ideas \& Notation

T is a subset of S every elem. of T is an elem. of S

T and S are equal

$$
T=S \quad T \neq S
$$

$T \subset S$ and $S \subset T$

The empty set
The empty set has no elements and is denoted by ϕ or $\},|\phi|=0$

Given any set $S, \phi \subset S$. Why?
Is every element of ϕ an element of S ?

Can you find an elem. of ϕ that is not an elem. of s?

Sets can be tricky!

$$
S=\{\{1,2,3\}, 4,(5,6), 0\}
$$

set of ints integer tuple of inks

$$
\begin{aligned}
& 1 \notin S \\
& \{1,2,3\} \notin S \\
& \{1,2,3\} \in S
\end{aligned}
$$

Some Known infinite sets
$N=\{1,2,3, \ldots\}=\{x \mid x$ is a positive integer $\}$ *"such that" or $\{x: \cdots\}$

$$
\begin{aligned}
\mathbb{Z} & =\{\cdots,-3,-2,-1,0,1,2,3, \ldots\} \\
& =\{x \mid x \text { is an integer }\} \\
\mathbb{Q} & =\left\{x \left\lvert\, x=\frac{a}{b}\right. \text { where } a \in \mathbb{Z} \text { and } b \in \mathbb{N}\right\}
\end{aligned}
$$

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}
$$

natural numbers integers rational numbers

Intersection \& Union

$$
\underset{\uparrow}{S \cap} T=\{x \mid x \in S \text { and } x \in T\}
$$

Intersection

$$
\operatorname{Su}_{\uparrow} T=\left\{x \mid x \in \operatorname{Sor}_{\hat{\gamma}}^{\text {or }} x \in T\right\}
$$

Union

Can be generalized to multiple sets

$$
\begin{aligned}
& S_{1} \cap S_{2} \cap \ldots \cap S_{n}=\bigcap_{i=1}^{n} S_{i}=\left\{x \mid x \in S_{1} \text { and } \ldots \text { and } x \in S_{n}\right\} \\
& S_{1} \cup S_{2} \cup \ldots \cup S_{n}=\bigcup_{i=1}^{n} S_{i}=\left\{x \mid x \in S_{1} \text { or } \ldots \text { or } x \in S_{n}\right\}
\end{aligned}
$$

Addition rule (finite sets):

$$
|S \cup T|=|S|+|T| \text { if } \operatorname{Sn} T=\phi
$$

Product of Sets
$S_{X} T=\{(x, y) \mid x \in S$ and $y \in T\} \quad(x, y)$ ordered
Example: $S=\{a, b, c\} \quad T=\{1,2\}$

$$
\begin{aligned}
& S_{\times} T=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\} \\
& S_{\times} T \neq T \times S
\end{aligned}
$$

Product rule (finite sets):

$$
|S \times T|=|T \times S|=|S| \times|T|
$$

To generate a tuple

1. Choose an elem. from S
\#ways
2. choose an elem. from T

Example:

$$
\begin{aligned}
S= & \{a, b, c\} \\
T= & \{1,2\} \\
R= & \{0, v\} \\
S \times T \times R= & \{(x, y, z) \mid x \in S \text { and } y \in T \text { and } z \in R\} \\
S \times T \times R= & \{(a, 1, b),(a, 1, v),(a, 2, b),(a, 2, \diamond), \\
& (b, 1, b),(b, 1, \diamond),(b, 2, b),(b, 2, \diamond), \\
& (c, 1, b),(c, 1, \diamond),(c, 2, b),(c, 2, \diamond)\} \\
|S \times T \times R|= & |S| \times|T| \times|R|=3 \times 2 \times 2=12 .
\end{aligned}
$$

The power set
Given a set S, the power set of S is the set of all subsets of S

$$
\underbrace{P(s)=2^{s}}_{\text {notation }}=\{T \mid T \subset s\}
$$

Example: $S=\{a, b, c\}$

$$
\mathcal{P}(s)=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Question: what is $|P(s)|$ for finite s ?

Let's take the same example:

$$
S=\{a, b, c\}
$$

$$
\begin{aligned}
P(s)= & \{\phi, \\
& \{a\},\{b\},\{c\}, \\
& \{a, b\},\{a, c\},\{b, c\}, \\
& \{a, b, c\}\}
\end{aligned}
$$

$$
1=\binom{3}{0}
$$

$$
3=\binom{3}{1}
$$

$$
3=\binom{3}{2}
$$

$$
1=\binom{3}{3}
$$

In how many ways can we choose a subset of size k ?

Conclusion: Given S such that $|S|=n$,
\# subsets of S of size K is $\binom{n}{s}$
So $|\rho(s)|=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots\binom{n}{n}=\sum_{k=0}^{n}\binom{n}{k}$

Another way to count subsets
To count the number of subsets, think about the task of generating one subset T.

The tree gets twice as big with each level: $2 \times 2 \times 2=8$

$$
S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

1. choose if a_{1} is in subset \qquad
2. choose if a_{2} is in subset \qquad
n. choose if a_{n} is in subset

$$
\underbrace{\frac{2}{2 \times 2 \times \ldots \times 2}}_{n}
$$

Therefore,

$$
\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots\binom{n}{n}=2^{n} \quad(\text { wow!) }
$$

These are called binomial coefficients (later)

