- Number of permutations
- Number of k-permutations ($n \geqslant k$) e.g. seating n people on k chairs
$\frac{n!}{(n-k)!}$
$\binom{n}{2}=\frac{n(n-1)}{2}$
$\binom{n}{k}$
2^{n}

Don't just remember formulas!
Understand them, reproduce them reason about them

Functions

- A function is a mapping from one set S into another set T
- The function "maps" elements from S to elements in T
- The function assigns to every element in S exactly one element in T

It does not have to "make sense"!

Function: $\quad f: X \rightarrow Y$

$$
\begin{gathered}
\text { Domain } \quad \text { Co-domain } \\
x \in X \quad y \in Y \\
y=f(x)
\end{gathered}
$$

When the image is the entire set Y, f is onto.
f is a function: For every $x \in X$, there exists exactly one $y \in Y$ such that $f(x)=y$
f is onto: For every $y \in Y$, there exists an $x \in X$ such that $f(x)=y$

Examples: which of the following is a function?

X

\checkmark onto

X

\checkmark not onto
which is an onto function?

Some more notations:
\forall : universall quantifier
"All"
\exists : existential quantifier
"Exists"
$\exists!$: unique existential quantifier "Exists exactly one"
function: $\forall x \in X, \exists!y \in Y, f(x)=y$
onto: $\forall y \in Y, \exists x \in X, f(x)=y$
(Say them in English)

Another property of functions
one-to-one: For every $x_{1}, x_{2} \in \chi$,

$$
\begin{gathered}
\text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{1}\right) \neq f\left(x_{2}\right) \\
\forall x_{1} \in X, \forall x_{2} \in x,\left(x_{1} \neq x_{2}\right) \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
\end{gathered}
$$

or

$$
\forall x_{1}, x_{2} \in X,\left(x_{1} \neq x_{2}\right) \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

We can't have :

Not one-to-one

one-to-one: N_{0} one-to-one: N_{0} one-to-one: Yes one-to-one: Yes onto : No onto : Yes onto : No $\underbrace{\text { onto : Yes }}_{\text {Bijection }}$

If $f: X \rightarrow Y$ is a bijection
then $|X|=|Y|$ (useful for counting)

Other terminology
one-to-one
onto injection surjection
one-to-are correspondence
bijection
A bijection can be inverted
If $f: X \rightarrow Y$ is a bijection with $f(x)=y$ then there exists a bijection $g: Y \rightarrow X$ such that

$$
f(x)=y \Leftrightarrow x=g(y)=f^{-1}(y)
$$

we say that g is f^{-1} (the inverse of f)

- How to show that $f: X \rightarrow Y$ is one-to-one?
Δ show if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$
- How to show that $f: X \rightarrow Y$ is onto?
\otimes Given $y \in Y$, find an $x \in \mathcal{X}$ such that $f(x)=y$
- How to show that $f: X \rightarrow Y$ is a bijection?
Δ Show both: one-to-one \& onto.

Example: $\quad f:(0,1) \rightarrow \mathbb{R}$

$$
f(x)=\ln \frac{x}{1-x}
$$

Note: \mathbb{R} is the set of real numbers: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

$$
(0,1)=\{x \in \mathbb{R} \mid 0<x<1\}
$$

one-to-one: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \ln \frac{x_{1}}{1-x_{1}}=\ln \frac{x_{2}}{1-x_{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{x_{1}}{1-x_{1}}=\frac{x_{2}}{1-x_{2}} \Rightarrow x_{1}\left(1-x_{2}\right)=x_{2}\left(1-x_{1}\right) \\
& \Rightarrow x_{1}-x_{1} x_{2}=x_{2}-x_{1} x_{2} \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

onto: Given $y \in \mathbb{R}$, find an $x \in(0,1)$ that satisfies $f(x)=y$, so $\ln \frac{x}{1-x}=y$

Find x :

$$
\begin{aligned}
& \frac{x}{1-x}=e^{y} \\
& x=(1-x) e^{y}=e^{y}-x e^{y} \\
& x\left(1+e^{y}\right)=e^{y} \\
& x=\frac{e^{y}}{1+e^{y}}
\end{aligned}
$$

Finally, make sure $x \in(0,1): e^{y}>0 \Rightarrow x>0$

$$
\begin{aligned}
& e^{y}<1+e^{y} \Rightarrow x<1 \\
& \text { (both positive } \Rightarrow \text { ratio }<1 \text {) }
\end{aligned}
$$

Next't time: Counting with bijections

