Counting with bijections

Counting with bijections
Recall ...
\# n-bit words \qquad 2^{n}
\# subsets of $S=\left\{a_{1}, \ldots, a_{n}\right\}$ \qquad 2^{n}

Coincidence?
Assume you knew there are 2^{n} n-bit words, but nothing about the number of subsets.
Define $f: \mathcal{P}(s) \rightarrow\{0,1\}^{n}=\frac{\{0,1\} \times\{0,1\} \times \ldots \times\{0,1\}}{n}$

$$
f(T)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

where $\quad b_{i}= \begin{cases}1 & \text { if } a_{i} \notin T \\ 0 & \text { if } a_{i} \notin T\end{cases}$

Example: $S=\left\{a_{1}, a_{2}, a_{3}\right\} \quad(n=3)$

Is $f: \mathcal{P}(s) \longrightarrow\{0,1\}^{n}$ as defined above a bijection?
one-bo-one: $f(T)=f\left(T^{\prime}\right) \Rightarrow$

$$
\begin{gathered}
\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right) \\
\text {. } a i \in T \Rightarrow b_{i}=1 \Rightarrow b_{i}^{\prime}=1 \Rightarrow a_{i} \in T^{\prime} \text {, so } T \subset T^{\prime} \\
\text {. } a_{i} \in T^{\prime} \Rightarrow b_{i}^{\prime}=1 \Rightarrow b_{i}=1 \Rightarrow a_{i} \in T \text {, so } T^{\prime} \subset T
\end{gathered}
$$

Therefore, $T=T^{\prime}$
onto: Given $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in\{0,1\}^{n}$
construct T such that $\left\{\begin{array}{l}a_{i} \in T \text { if } b_{i}=1 \\ a_{i} \notin T \text { if } b_{i}=0\end{array}\right.$ obviously $T \in P(s)$ and $f(T)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.

Therefore f is a bijection (being both one-to-one \& onto)
So, $|P(s)|=\left|\{0,1\}^{n}\right|=2^{n}$

Select k out of n

Select k from n	ordered	un ordered
no repetition	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Example: $S=\{a, b, c\} \quad n=3$
$\bigcup_{k=2} \quad a a \quad a b a c$ $b a \quad b b b c$ ca cb cc

Product rule does not work!

Some outcomes are overcounted, some are not Can't adjust for overcounting

Different outcomes overcounted differently

Given $\quad S=\left\{a_{1}, a_{2}, a_{3}\right\}$
consider ${ }^{2} S=\left\{\left\{a_{1}, a_{1}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\},\left\{a_{2}, a_{2}\right\},\left\{a_{2}, a_{3}\right\},\left\{a_{3}, a_{3}\right\}\right\}$
Note: This is different than $S^{2}=S \times S=\left\{\left(a_{1}, a_{1}\right),\left(a_{1}, a_{2}\right),\left(a_{1}, a_{3}\right)\right.$, $\left(a_{2}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(a_{2}, a_{3}\right)$

$$
\left.\left(a_{3}, a_{1}\right),\left(a_{3}, a_{2}\right),\left(a_{3}, a_{3}\right)\right\}
$$

$$
\begin{gathered}
T=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{\geqslant 0}, x_{1}+x_{2}+x_{3}=2\right\} \\
\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}
\end{gathered}
$$

$f:{ }^{2} S \rightarrow T$
$f(s)=\left(x_{1}, x_{2}, x_{3}\right)$ where $x_{1}=\# a_{1}$ in s $x_{2}=\# a_{2}$ in s $x_{3}=\# a_{3}$ in s

${ }^{2} 5$
T
It's not hard to show f is a bijection

- If s and s^{\prime} map to the same element in T, they agree on the multiplicity of all clements in $\left\{a_{1}, \ldots, a_{n}\right\}$
- Every element in T corresponds to some element in ${ }^{2} S$

In general, we have a bijection

$$
f:{ }^{k} S \longrightarrow\{\underbrace{\left(x_{1}, x_{2}, \ldots, x_{n}\right)}_{n-\text { tuple }} \in \mathbb{Z}_{\geqslant 0}^{n} \mid \sum_{i=1}^{n} x_{i}=k\}
$$

So we have to count the number of integer solutions to:

$$
\begin{gathered}
x_{1}+x_{2}+\cdots+x_{n}=K \\
x_{i} \geqslant 0
\end{gathered}
$$

This is equivalent to partitioning k into n ordered parts

This is equivalent to separating k rocks into n groups
n-1 separators
Example:

This is equivalent to making a binary word with $n-1$ is and K s

How many $(n-1+k)$-bit words have $n-1$ is?

Example: In how many ways can we select 3 elements from $\{a, b, c, d, e, f, g\}$ with repetition \& no order ?
Same as number of integer solutions to

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}=3, \quad x_{i} \geqslant 0
$$

Answer: $\left(\binom{7}{3}\right)=\binom{7-1+3}{7-1}=\binom{9}{6}=\frac{9!}{6!3!}$

We can handle more general \geqslant constraints
Example: $x_{1}+x_{2}+x_{3}=15$

$$
\begin{array}{ll}
x_{1} \geqslant 0 & \\
x_{2} \geqslant-2 & x_{2}=-2+x_{2}^{\prime}, \\
x_{2}^{\prime} \geqslant 0 \\
x_{3} \geqslant 3 & x_{3}=3+x_{3}^{\prime}, x_{3}^{\prime} \geqslant 0
\end{array}
$$

$$
\begin{aligned}
& x_{1}+\left(-2+x_{2}^{\prime}\right)+\left(3+x_{3}^{\prime}\right)=15 \\
& x_{1}+x_{2}^{\prime}+x_{3}^{\prime}=14 \quad x_{1}, x_{2}^{\prime}, x_{3}^{\prime} \geqslant 0
\end{aligned}
$$

Answer: $\left(\binom{3}{14}\right)=\binom{3-1+14}{3-1}=\binom{16}{2}$

