

Counting with bijections Recall ... # n-bit words _____2n # subsets $f S = \{a_1, ..., a_n\}$ 2^n Coincidence ? Assume you knew there are 2" n-bit words, but nothing about the number of subsets. Define $f: \mathcal{P}(s) \longrightarrow \{0,1\}^n = \{0,1\} \times \{0,1\} \times \dots \times \{0,1\}$ n $f(T) = (b_1, b_2, \dots, b_n)$ if aieT where $b_i = \begin{cases} 1 \\ 0 \end{cases}$ if ai & T

Is $f: \mathcal{P}(5) \longrightarrow \{0,1\}^n$ as defined above a bijection?

 $one-bo-one: f(T)=f(T') \Rightarrow$

 $(b_1, b_2, \dots, b_n) = (b_1, b_2, \dots, b_n)$

• $a_i \in T \Rightarrow b_i = 1 \Rightarrow b_i' = 1 \Rightarrow a_i \in T'$, so $T_C T'$ • $a_i \in T' \Rightarrow b_i' = 1 \Rightarrow b_i = 1 \Rightarrow a_i \in T$, so $T_C T$

Therefore, T=T'

onto: Given $(b_1, b_2, ..., b_n) \in \{0, 1\}^n$ construct T such that $\begin{cases} a_i \in T \text{ if } b_i = 1 \\ a_i \notin T \text{ if } b_i = 0 \end{cases}$ obviously $T \in P(S)$ and $f(T) = (b_1, b_2, ..., b_n)$. Therefore f is a bijection (being both one-to-one & onto) So, $|P(5)| = |f_{0,1}f_{0}| = 2^{n}$

Select K out of n

Example: S = {a, b, c} n=3 k=2 ab aa ac ba bb bc 6 ways ca cb cc

Product rule does not work!

Some outcomes are overcounted, some are not

Can't adjust for overcounting

Different outcomes overcounted differently

Given $S = \{a_1, a_2, a_3\}$ Consider $^{2}S = \{\{a_{1}, a_{1}\}, \{a_{1}, a_{2}\}, \{a_{1}, a_{3}\}, \{a_{2}, a_{2}\}, \{a_{2}, a_{2}\}, \{a_{2}, a_{3}\}, \{a_{3}, a_{3}\}\}$ Note: This is different than $S^2 = SxS = \{(a_1, a_1), (a_1, a_2), (a_1, a_3), (a_1, a_3), (a_2, a_3), (a_3, a_3), (a_4, a_3), (a_4, a_3), (a_4, a_3), (a_5, a_4), (a_6, a_3), (a_6, a_3), (a_6, a_3), (a_6, a_3), (a_6, a_3), (a_6, a_3), (a_7, a_3), (a_8, a_3)$ $(a_2, a_1), (a_2, a_2), (a_2, a_3)$ $(a_3, a_1), (a_3, a_2), (a_3, a_3)$ $T = \left\{ (\chi_1, \chi_2, \chi_3) \middle| \chi_1, \chi_2, \chi_3 \in \mathbb{Z}_{\geq 0}, \chi_1 + \chi_2 + \chi_3 = 2 \right\}$ $\mathbb{Z}_{\neq 0} = \{0, 1, 2, 3, \dots\}$ $f: S \rightarrow T$ $f(s) = (z_1, z_2, z_3)$ where $Z_1 = \# a_1$ in s $\chi_2 = \# a_2 \text{ in } S$ $\chi_3 = \# a_3 \text{ in } S$

In general, we have a bijection $f: {}^{k}S \longrightarrow \left\{ (x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{Z}_{\geq 0}^{n} \mid \sum_{i=1}^{n} x_{i} = k \right\}$ n-tupleSo we have to count the number of integer solutions to: L'<u>n</u> parts $\chi_1 + \chi_2 + \cdots + \chi_n = K$ xi≥o This is equivalent to partitioning k into n ordered parts

ordered parts

This is equivalent to separating k rocks into n groups n_1 separators Example: k=8 n=5 x_1 x_2 x_3 x_4 25 2 0 2 1 3 $\chi_1 + \chi_2 + \chi_3 + \chi_4 + \chi_5 = 8$

How many (n-1+k)-bit words have n-1 15?

Select K from n unordered ordered n > k no repetition $(n-k)! \qquad \begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$ repetition n^{κ} $\binom{n-1+\kappa}{n-1} = \binom{n}{k}$ $\stackrel{5}{\sim}$ n choose k with rep. Notation Example: In how many ways can we select 3 elements from {a,b,c,d,e,f,g} with repetition & no order ? Same as number of integer solutions to $\chi_1 + \chi_2 + \chi_3 + \chi_4 + \chi_5 + \chi_6 + \chi_7 = 3, \quad \chi_i \ge 0$ Answer: $\binom{7}{3} = \binom{7-1+3}{7-1} = \binom{9}{6} = \frac{9!}{6!3!}$

We can handle more general > constraints Example: $\chi_1 + \chi_2 + \chi_3 = 15$ $\varkappa_{i} \geqslant o$ $\begin{aligned} x_2 &= -2 + x_2', \quad x_2' \geqslant 0 \\ x_3 &= 3 + x_3', \quad x_3' \geqslant 0 \end{aligned}$ $z_2 \ge -2$ $x_3 \geqslant 3$ $x_1 + (-2 + x_2') + (3 + x_3') = 15$ $x_1 + x_2' + x_3' = 14$ $x_1, x_2', x_3' \ge 0$ Answer: $\begin{pmatrix} 3 \\ 14 \end{pmatrix} = \begin{pmatrix} 3-1+14 \\ 3-1 \end{pmatrix} = \begin{pmatrix} 16 \\ 2 \end{pmatrix}$