Welcome
CSC 150
course web site: http:// www.cs. hunter.cuny.edu/~saad
/courses/dm
email:saad@hunter.cuny.edu
office hours: TBA
Important things: Cunyfirst email (make sore you read it)
Gradescope: 1) Sign up as student gradescope. Com
2) Add yourself to course code: MSGXYK

Discrete Math
Math of computing/algorithms Math for everyday / puzzles

- counting/combinatorics
- Proofs (no math without proofs)
- Number theory (study of ütegess and then fropaties)
- Functions/vclations / set theory

- Graph theory

Come questions/bopics in Discrete Math

1) Birthdays

In a room full of people, what's the prob. of finding two with the same birthday (Counting)
2) Primes (finite or infinite?)
(proof)
3) Fibonacci Series: $0,1,1,2,3,5,8,13,21, \ldots$ Recurrences/prof by Induction
4) Sums: $1+2+3+\cdots+n$

$$
\left.\begin{array}{l}
f(x)=x \\
\quad \int_{0}^{n} f(x) d x=\frac{n^{2}}{2} \neq
\end{array}\right)
$$

total area: $\frac{n^{2}}{2}+n_{x} \frac{1}{2}$

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

$$
=\frac{n^{2}+n}{2}=\frac{n(n+1)}{2}
$$

Example: $n=5: 1+2+3+4+5=\frac{5 \times 6}{2}=15$
5)

- What are graphs. pairwise relations vertices: objects edges: connections, relation.

Connect all Houses to all utilities
with no overlap
Puzzle is unsolvable
we need math to prove it.
Planar Graphs.

5 vertices
8 edges
List edges: $(A, B),(A, D),(B, D)$
$(B, E),(B, C),(C, D)$
$(C, E),(D, E)$

A graph is planar if you
(no oven lap)

This graph is planar because I can redraw it with no overlap

this graph is NOT planar because no matter how hard you try you cannot redraw it without overlap

A Property of Planar Graphs: Eulerls Formula

free on plane where you can move without crossing any edges
Planar Graphs:

$$
v-e+f=2
$$

Count: q vertices

$$
V=9
$$

$$
\frac{e=11}{4 \text { faces }}
$$

$$
f=4
$$

$$
\begin{aligned}
& v-e+f= \\
& 9-11+4=2
\end{aligned}
$$

Always true for planar graph
6) Lazy Professor (Doesn't want to grade, permute tests among
 the students)
Bad permutations
In general:
What is the prob. that we end up with bad permutations?
Listing all permutations is NoT feasible.
\# permutations for n objects:

$$
1 \times 2 \times 3 \times \ldots \times n=n!\quad(n \text { factorial) })
$$

Example: $n=3: 1 \times 2 \times 3=6$

