

Understanding ∞
Hilbert's Hotel:

- Hilbert has a hotel with infinite number of rooms.
- All rooms ave occupied.
- One new customer thous up.
- Hilbert finds a room for the new customer!

How?
Move customer in rom i bo room $i+1$. Since we have infinitely many rooms, every customer will find a room.
Room 1 is now free!
What if infinitely many customers show up? Move Customers in room i to room hi. Now all add numbered rooms are free!

So we conclude that $N=\{1,2,3, \ldots\}$ and $\{1,3,5, \ldots\}$ and $\{2,4,6, \ldots\}$ have the same "size".

Are all infinities the same? NO
We define countable sets. A set S is countable if:

- S is finite, or
- $\exists f: N \rightarrow S$ and f is a bijection.
(or $f: S \rightarrow \mathbb{N}$)

Consider $\quad f: \mathbb{N} \rightarrow\{2,4,6, \ldots\}$

$$
f(x)=2 x
$$

f is one-to-one: $\quad x_{1} \neq x_{2} \Rightarrow 2 x_{1} \neq 2 x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
f is onto: $\forall y \in\{2,4,6, \ldots\} \cdot x=\frac{y}{2} \in \mathbb{N}$ and $f(x)=y$
In other words: A set S is countable if we can give a specific order on its elements such that each element has a finite rank in that order.

This suggests the following results:

- If S is countable, then TCS is countable
- preserve relative order of elements in T, each will have a rank that is at mast it's rank in S, so finite

- If A and B are countable, the $A \cap B$ is countable.

$$
A \cap B \subset A
$$

- If A and B are countable, then $A \cup B$ is countable.

$$
A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

Can we list elements in $A \cup B$ such that each will have a finite rank?

$$
\begin{array}{lllllll}
a_{1} & a_{2} & a_{3} & \cdots & b_{1} & b_{2} & b_{3} \\
a_{1} & b_{1} & a_{2} & b_{2} & a_{3} & b_{3} & \cdots
\end{array}
$$

Each element at most doubles its rank, so finite.

Is \mathbb{Z} countable?

$$
0,1,-1,2,-2,3,-3,4,-4, \ldots
$$

If $i \in \mathbb{Z}$ is positive, it's rank is $2 i$, so finite rank.
If $i \in \mathbb{Z} \leqslant 0$, it's rank is $2|i|+1$, so finite rank.

$$
f(x)=\left\{\begin{array}{cc}
2 x & x>0 \\
-2 x+1 & x \leqslant 0
\end{array}\right.
$$

Bijection

Is Q countable?
Fist if A and B are countable, then $A \times B$ is countable

$$
A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

| | $b_{1}, b_{2} \cap$ | $b_{3} \cap<b_{4} \ldots$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a_{1} | $\left(a_{1}, b_{1}\right)\left(a_{1}, b_{2}\right)$ | $\left(a_{1}, b_{3}\right)$ | $\left(a_{1}, b_{4}\right)$ | This "diagonal" order

Proof:

Q can be thought of as a "subset" of $\mathbb{Z} \times \mathbb{N}$.
So \mathbb{Q} is countable! Every fraction $\frac{a}{b}$ is a "pair" where $a \in \mathbb{Z}$ and $b \in \mathbb{N}$.
\mathbb{R} is NoT countable (Diagonalization)
There is no bijection from \mathbb{N} to \mathbb{R}.
Proof by contradiction: Suppose these is ouch bijection $f: \mathbb{N} \rightarrow \mathbb{R}$ then for every $i \in \mathbb{N}$, let $f(i)=r \in R$.
Construct $x \in \mathbb{R}$ such that the its digit of x is different than the th digit of $f(i)$

Another way: Since f is bijection and $x \in \mathbb{R}$, then $\exists j$ such that $f(j)=x$. But then j th digit of x is different than fth digit of x. contradiction.

Power Sets.

- We can show that there is No bijection from s to $P(s)$. (similar diagonalization method)
- There are infinite tevets of infinity. (N smallest).
- This means the power set of any infinite set is not countable.

