

The Inclusion-Exclusion Principle
Most basic form with two sets

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

(why?)
Example 1: I have 50 socks, 35 are black and 30 are cotton. How many black cotton socks do I have?
$A=\{x: x$ is black sock $\} \quad B=\{x: x$ is cotton sock $\}$

$$
\begin{aligned}
& |A \cup B|=|A|+|B|-|A \cap B| \Rightarrow 50=35+30-|A \cap B| \\
& |A \cap B|=15 .
\end{aligned}
$$

Example 2 : A bit more involved.
In a group of 12 people, each person knows more than 6 other people. Show that we Can find 3 people that know each other.

people known people known by P_{2} by P_{1}

$$
\begin{aligned}
&|A \cap B|=|A|+|B|-|A \cup B| \\
&>6>6 \leqslant 12 \\
&|A \cap B|>6+6-12=0 \\
&|A \cap B|>0 \quad \text { (Done) }
\end{aligned}
$$

What about more sets?

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C| & & \text { include) } \\
& -|A \cap B|-|A \cap C|-|B \cap C| & & \text { (exclude) } \\
& +|A \cap B \cap C| & & \text { (include) }
\end{aligned}
$$

Four sets:

$$
\begin{array}{rlr}
|A \cup B \cup C \cup D| & =|A|+|B|+|C|+|D| & \text { (induce) } \\
& -|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C|-|B \cap D|-|C \cap D| & \text { (Excuse) } \\
& +|A \cap B \cap C|+|A \cap B \cap D|+|A \cap C \cap D|+|B \cap \cap \cap D| & \text { (include) } \\
& -|A \cap B \cap C \cap D| & \text { (Exclude) }
\end{array}
$$

$$
\begin{aligned}
& |A|=7 \\
& |B|=8 \\
& |C|=5 \\
& |A \cap B|=5 \\
& |A \cap C|=2
\end{aligned}
$$

B

$$
\begin{array}{rlrl}
\text { Total }= & 7+8+5 & & |B \cap C|=3 \\
& -5-2-3 & & |A \cap B \cap C|=2 \\
& +2=12 &
\end{array}
$$

Rule: Include all singletons, Exclude all pains, Include all triplets....
Why Does it work?
Consider a given element and suppose it belongs to $n>0$ sets It belongs to $\binom{n}{2}$ pains of sets
and $\binom{n}{3}$ tiplets of sets
and $\binom{n}{4}$ quadruplets of sets
The Inclusion - Exclusion principle for this element contributes

$$
\begin{aligned}
& \binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\binom{n}{4}+\cdots\binom{n}{n}= \\
& \binom{n}{0}-\left[\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots\binom{n}{n}\right]=1-0=1 .
\end{aligned}
$$

So each element contributes 1.

Example 3:
How many positive integers $\leqslant 1000$ are divisible by 2 or 3 or 5 .
Recall: Union is OR logic.
$S_{i}=$ \# elem n divisible by i
We want:

$$
\begin{aligned}
& \left|s_{2} \cup S_{3} \cup S_{5}\right|=\left|s_{2}\right|+\left|s_{3}\right|+\left|S_{5}\right|-\left|s_{2} \cap S_{3}\right|-\left|S_{2} \cap S_{5}\right|-\left|S_{3} \cap S_{5}\right|+\left|S_{2} \cap S_{3} \cap S_{5}\right| \\
& \left|s_{2}\right|=\frac{1000}{2}=500 \quad\left|S_{3}\right|=\left[\frac{1000}{3}\right\rfloor=333 \quad\left|S_{5}\right|=\frac{1000}{5}=200 \\
& \left|S_{2} \cap S_{3}\right|=\left\lfloor\frac{1000}{6}\right\rfloor=166 \quad\left|S_{2} \cap S_{5}\right|=\frac{1000}{10}=100 \quad\left|S_{3} \cap S_{5}\right|=\left\lfloor\frac{1000}{15}\right\rfloor=66 \\
& \qquad\left|S_{2} \cap S_{3} \cap S_{5}\right|=\left\lfloor\frac{1000}{30}\right\rfloor=33 \\
& \text { Finally }\left|S_{2} \cup S_{3} \cup S_{5}\right|=500+333+200-166-100-66+33=?
\end{aligned}
$$

Example 4: Good Passwords. How many n Char passwords can we make if the password must contain at least one upper case letter, one lower case letter, and one digit?

This is an AND logic. Product rule will be hard to use due to overcountuing. One might be tempted to say

- Pick 3 char of the n char. with order.
- Make them upper case letter, lower case letter, digit
- Choose tare remaining n-3 char from 62 pacaibilities

Giving $\frac{n!}{(n-3)!} \times 26 \times 26 \times 10 \times 62^{n-3}$
But this overcounts and it's hard to deal with because the overcount depends on the choices of the $n-3$ remaining letters.

Transform to OR logic by negating. So count Bad passwords. How many passwords don't have an upper case, or a Comes case letter, or a digit?

\#Good passwords $=62^{n}-\left(36^{n}+36^{n}+52^{n}-26^{n}-26^{n}-10^{n}+0\right)$

The Lazy Professor (revisited)
How many permutations assign no student to his/her own test?
Convert to of logic: Count bad permutations.
Let $S_{i}=$ Set of bad permutations for student r.
(S_{i} assigns student i his/her test)
We want \#bad perm. $=\left|S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right| \frac{\# \text { terms }}{n}$
per mull actions that assign student i to his test. $(n-1)!$
$\begin{array}{ll}\text { \# per mull actions that assign student } i & \text { to his test. }(n-1)! \\ \text { \# "" " "tridents }(i, j) & n \\ n\end{array}$
\# " " " students ($i, j, k)$ to their fest $(n-3)!\binom{n}{3}$
\# bad permutations $=(n-1)!\binom{n}{1}-(n-2)!\binom{n}{2}+(n-3)!\binom{n}{3}-\cdots$.

* Good permutations =

$$
\begin{aligned}
& n!-(n-1)!\binom{n}{1}+(n-2)!\binom{n}{2}-\left(\begin{array}{l}
n-3)!\binom{n}{3}+\cdots \\
=
\end{array} \frac{n!}{0!}-\frac{n!}{\frac{n!}{1!}+\frac{n!}{2!}-\frac{n!}{3!}+\cdots+(-1)^{n} \frac{n!}{n!}}\right. \\
= & n![\underbrace{\left.\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n}}{n!}\right]}_{1 / e \text { for large } n}
\end{aligned}
$$

$\approx \frac{n!}{e} \quad$ (prob. of good permutation is $\frac{1}{e} \approx 0.3678$)

