

Hit as many as you can

Pigeonhole, not what you might think

The Pigeonhole Principle
I will explain what Pigeonhole is, but for now Consider the following problems

* Choose 51 numbers in $\{1,2, \ldots, 100\}$. Prove that 2 of them must be consecutive $(x, x+1)$
* Place 10 points inside 3×3 square. Prove that 2 of them must be within a distance of $\sqrt{2}$.
* Place the numbers $1,2, \ldots, 10$ in 3 bins.

Show that the sum in one bin must be at leas 19.

What's common among the above problems?

- First, they give you freedom in dong something in any way you want.
- Then, they claim something will always happen no matter how you do it.

When you sense this, think Pigconhale!

Pigeonhole: Basic form
Given n boxes and $n+1$ objects, when we place all objects in boxes, ot last one box sill contain at least 2 objects.

$$
0_{0}^{0} 0_{0}^{\frac{\beta^{k}}{} n+1 \text { objects }}
$$

Proof by contradiction: Let $x_{i}=$ \#objects in box i and suppose $\forall i, x_{i} \leqslant 1$. Then $\sum_{i=1}^{n} x_{i} \leqslant \underbrace{1+1+\ldots+1}=n$. Contradiction!

Applications:
Given a 3×3 square, place 10 points in it. Prove that 2 of them are within a distance of $\sqrt{2}$.

- First, think pigeonhole
- Second, set it up: where are the objects \& boxes
- If 10 points are objects, we need 9 boxes
- where do we see nine ?

$$
=\sqrt{2}
$$

Choose 51 numbers in $\{1,2, \ldots, 100\}$. Prove 2 of them must be consecutive?

- Sounds like Pigeonhole.
- Need 50 boxes ?
$1,2 \quad 3,4 \quad 5,6 \quad \cdots \quad 99$
Choosing a number \Rightarrow place a token in its box.
51 tokens, 50 boxes $\Rightarrow 1$ box will contain
2 tokens. So two numbers will be concecactive.

Generalization
Given n boxes and m objects placed in the boxes, at least one box will contain at least $\left\lfloor\frac{m-1}{n}\right\rfloor+1$ objects.

Proof: let $x_{i}=\#$ objects in box i and suppose
$\forall i . \quad x_{i} \leqslant\left\lfloor\frac{m-1}{n}\right\rfloor$. Then

$$
\sum_{i=1}^{n} x_{i} \leqslant\left\lfloor\frac{m-1}{n}\right\rfloor+\left\lfloor\frac{m-1}{n}\right\rfloor+\cdots+\left\lfloor\frac{m-1}{n}\right\rfloor=n\left\lfloor\frac{m-1}{n}\right\rfloor
$$

$$
\leqslant n \frac{m-1}{n}=m-1 \text {. Contradiction. }
$$

$\left.\sum^{M}\right\}:$ If m, n positive integers, then

$$
\left\lfloor\frac{m-1}{n}\right\rfloor+1=\left\lceil\frac{m}{n}\right\rceil
$$

must contain
at least the average

Application: Place the numbers $1,2, \ldots, 10$ in 3 bins.

- Prove at least one bin contains at least 4 numbers.

Pigeonhole: $n=3, m=10 .\left\lceil\frac{m}{n}\right\rceil=\left\lceil\frac{10}{3}\right\rceil=4$

- Prove at least one bin contains a sum of at least 19.

Pigcoubole: $n=3, m=1+2+\cdots+10=55 .\left[\frac{55}{3}\right]=19$
Scrambled Clock: Scramble the numbers. Snow there are 3 consecutive numbers that add up to at least 20

"Divide" the clock into boxes of 3 .
One box must contain a sum of at least

$$
[(1+2+\cdots+12) / 4]=20
$$

- Sometimes, we have to be "smart" about how to set up the problem.
- Here's an example: The numbers 1 to 10 are written down in some order. Show there are 3 consecutive numbers that add up to at least 15 .

$$
\cdots \cdot|\cdot \cdot \cdot| \cdot \cdot \cdot \mid \cdot
$$

One of the 4 boxes must contain a sum of at least

$$
\left\lceil\frac{55}{4}\right\rceil=14 .
$$

Does not give us what we want ! ! !

Idea: 4 boxes too many.
Remove largest number, 10 .
example: •• $\left|\cdot \cdot{ }^{10} \cdot\right| \cdot \bullet \cdot$
One box must contain a sum of at least $\left\lceil\frac{45}{3}\right\rceil=15$.
But what if it's the second box?

- Not consecutive any more
- Replace lat number in box by 10
- Since 10 is largest, still works

Another example of being "smart" in setting up the pigeonhole.

Place 5 points on surface of sphere. Prove that 4 of them lie in the same hemisphere.

By Pigeonhole one hemisphere must contain $\left\lceil\frac{5}{2}\right\rceil=3$ points.

Does not give vs what we want!

Idea: Choose the hemispheres.

Choose hemispheres defined by the center and 2 points, as shown.

$$
\text { Piegouhole }\left\{\begin{array}{l}
\text { Among the } 3 \text { remaining points, } \\
\text { one hemisphere will contain at } \\
\text { least }\left\lceil\frac{3}{2}\right\rceil=2 \text { points. }
\end{array}\right.
$$

Therefore, this hemisphere contains 4 points. Done.

An alternative way to look at Pigeonhole
Given n numbers $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
x_{1}+x_{2}+\ldots+x_{n}=m
$$

Then $\exists x_{i} \cdot x_{i} \geqslant \frac{m}{n}$
"One number mot be at least the average"

$$
\begin{aligned}
& x_{i}: \text { \# objects in box } i \\
& n: \text { \# boxes } \\
& m: \text { \# objects }
\end{aligned}
$$

