

If I can get on the bottom level (Base case) and if on the assumption (Inductive hypothesis) that I have reached some arbitrary level, I can (Inductive step.) climb to the next level; then I can (Conclusion) reach any level.

Mathematical Induction

- Proof technique
- Proving some properties of integers.

$$
\text { e.g. } \forall n \in \mathbb{N} . P(n)
$$

- In many cases we take $\mathbb{N}=\{0,1,2,3, \ldots\}$

Examples:

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
- Prove that every positive integer n can be written as $n=m 2^{k}$ where m is odd
- Prove that $\underbrace{1+3+5+\cdots+(2 n-1)}=n^{2}$ for all $n \geqslant 1$
first n ald numbers

How to prove by induction?
To prove $P(n)$ is true $\forall n \geqslant n_{0} \quad\left(\right.$ Typically $n_{0}=0$)

- Base case: Prove $P\left(n_{0}\right)$ is true
- Inductive step: Prove $\forall k \geqslant n_{0} . P(k) \Rightarrow P(k+1)$

In other words, assume $P(k)$ is true (inductive hypothesis) and prove $P(k+1)$ is also true.
That's it?

Example 1: Prove that $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ for all $n \geqslant 0$
Base case: $P(0): \sum_{i=0}^{0} 2^{i}=2^{0+1}-1$

$$
2^{0}=1
$$

Inductive step: $\forall k \geqslant 0 . P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
P(k): \sum_{i=0}^{k} 2^{i} & =2^{k+1}-1 \quad \text { (Inductive hypothesis) } \\
P(k+1): \sum_{i=0}^{k+1} 2^{i} & =2^{k+2}-1 \\
\sum_{i=0}^{k+1} 2^{i}=\sum_{i=0}^{k} 2^{i}+2^{k+1} & =2^{k+1}-1+2^{k+1} \\
& =2 \cdot 2^{k+1}-1=2^{k+2}-1 . \text { Done }
\end{aligned}
$$

Example 2: Prove $\prod_{i=1}^{n}\left(1+\frac{1}{i}\right)=n+1$ for all $n \geqslant 1$
Base case: $n_{0}=1 . \quad P(1): \prod_{i=1}^{1}\left(1+\frac{1}{i}\right)=1+1$

$$
1+\frac{1}{1}=2
$$

Inductive step $\quad \forall k \geqslant 1 . P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
P(k): \prod_{i=1}^{k}\left(1+\frac{1}{i}\right)=k+1 \quad \text { (Inductive hypothesis) } \\
P(k+1): \prod_{i=1}^{k+1}\left(1+\frac{1}{i}\right)=(k+1)+1 \\
\begin{aligned}
\prod_{i=1}^{k+1}\left(1+\frac{1}{i}\right)=\left(\prod_{i=1}^{k}\left(1+\frac{1}{i}\right)\right)\left(1+\frac{1}{k+1}\right) & =(k+1)\left(1+\frac{1}{k+1}\right) \\
& =k+1+1=k+2
\end{aligned}
\end{aligned}
$$

Example 3.

$$
\begin{gathered}
T_{0}=0 \\
T_{n+1}=T_{n} \overline{T_{n}} \\
T_{1}=T_{0} \overline{T_{0}}=01 \\
T_{2}=T_{1} \overline{T_{1}}=0110 \\
T_{3}=T_{2} \bar{T}_{2}=01101001
\end{gathered}
$$

Prove T_{n} has 2^{n} bits $\forall n \in \mathbb{N}$
Base case: $P(0)$. To has 1 bit
Inductive step: $\forall k \geqslant 0 . P(k) \Rightarrow P(k+1)$
$P(k)$: T_{k} has 2^{k} bits (Inductive hypothesis)
$P(k+1)$: T_{k+1} has 2^{k+1} bits
$T_{k+1}=T_{k} \overline{T_{k}}$ which has $2 \times 2^{k}=2^{k+1}$ bit. Done.

Example 4. Prove that Tn starts with 01 for $n \geqslant 1$.
Base cure: $P(1)$: T_{1} stats with 01. (True)
Inductive step: $\forall k \geqslant 1 . P(k) \Rightarrow P(k+1)$
$P(K): T_{K}$ starts with 01 (Inductive stop)
$P(k+1)$: T_{k+1} starts with of
$T_{k+1}=T_{k} T_{k}$. T_{k+1} starts with T_{k}, so it stats with of.

Prove that T_{n} ends in 10 if n is even and in 01 if n is odd, for all $n \geq 1$.

Base case: $P(1)$: T_{1} ends in 01 . True v
Inductive step: $\forall k \geqslant 1 . P(k) \Rightarrow P(k+1)$
$P(k)$: T_{k} ends in 10 if k is even
$T_{k+1}=T_{k} \bar{T}_{k}$ and in 01 if k is add

- $K+1$ odd $\Rightarrow K$ even $\Rightarrow T_{k}$ ends in $10 \Rightarrow \bar{T}_{k}$ ends in $01 \Rightarrow$ T_{k+1} ends in Ol
- $k+1$ even \Rightarrow you do it.

Prove that $n^{3}-n$ is a multiple of $3 \quad \forall n \in \mathbb{N}$
Base case: $n_{0}=0 . \quad P(0): 0^{3}-0=3 \mathrm{~m}$ True
Inductive step: $\forall k \geqslant 0 . P(k) \Rightarrow P(k+1)$
$P(k): k^{3}-k=3 m \quad$ (Inductive hypothesis)

$$
P(k+1):(k+1)^{3}-(k+1)=3 m^{\prime}
$$

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =k^{3}+3 k^{2}+3 k+1-k-1 \\
& =\left(k^{3}-k\right)+3\left(k^{2}+k\right) \\
& =3 m+3\left(k^{2}+k\right) \\
& =3\left(m+k^{2}+k\right)=3 m^{\prime} .
\end{aligned}
$$

What's wrong with this:

$$
\begin{array}{r}
\text { Prove } \sum_{i=1}^{n} i=\frac{n^{2}+n+\sqrt{\pi}}{2}, \forall n \in \mathbb{N} \\
P(k): \sum_{i=1}^{k} i=\frac{k^{2}+k+\sqrt{\pi}}{2} \quad \text { (Inductive hypothesis) } \\
P(k+1): \sum_{i=1}^{k+1} i=\frac{(k+1)^{2}+(k+1)+\sqrt{\pi}}{2} \\
\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)=\frac{k^{2}+k+\sqrt{\pi}}{2}+\frac{2(k+1)}{2}=\frac{(k+1)^{2}+(k+1)+\sqrt{\pi}}{2} \\
\\
? ? ? ?
\end{array}
$$

$\forall n \geqslant 2 \cdot n$ lines no two of which are // intersect in one point.
Base case: $n_{0}=2 . P(2): 2$ lines not /| intersect in one point V
Inductive step: $\forall k \geqslant 2 . P(k) \Longrightarrow P(k+1)$
Given $k+1$ lines $l_{1}, l_{2}, l_{3}, \ldots, l_{k}, l_{k+1}$ no two of which are //, Consider the two sets of lines

- $l_{1}, l_{2}, l_{3}, \ldots, l_{k-1}, l_{k+1}$ (no two are II)
- $l_{1}, l_{2}, l_{3}, \ldots, l_{k-1}, l_{k}$ (no two are /|)

Each set has k lines \Rightarrow all lines in each set intersect in one point, namely the intersection of $l_{1} \& l_{2}$.
Therefore all $k+1$ lines go through that point !!!!

Here's another of those:
For every $n \geqslant 12, n=3 x+7 y$ where $x, y \in \mathbb{N}$.
Base case: $n_{0}=12 . P(12): 12=3 \times 4+7 \times 0$
Inductive step: $\quad \forall k \geqslant 12 . P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
P(k): k & =3 x+7 y, \quad x, y \in \mathbb{N} \\
P(k+1): k+1 & =3 x^{\prime}+7 y^{\prime}, x_{, y}^{\prime} \in \mathbb{N} \\
k+1=3 x+7 y+1 & =3 x+7 y+\underbrace{7-2 \times 3} \\
& =3(x-2)+7(y+1) \\
& \sum_{\in \mathbb{N} ?}
\end{aligned}
$$

Recitation: (simple induction)

- Prove $\sum_{i=1}^{n}(2 i-1)=n^{2}$ for all $n \geqslant 0$
-Prove $\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}$ for all $n \geqslant 0 \quad(a \neq 1)$
- Prove that a $2^{n} \times 2^{n}$ chessboard can be covered by L-shaped triminos if one squared is removed, for all $n \geqslant 1$.

Quick overview of inductive steps for above.

- $\sum_{i=1}^{k+1}(2 i-1)=\sum_{i=1}^{k}(2 i-1)+2(k+1)-1=k^{2}+2(k+1)-1$

$$
=k^{2}+2 k+1=(k+1)^{2}
$$

- $\sum_{i=0}^{k+1} a^{i}=\sum_{i=0}^{k} a^{i}+a^{k+1}=\frac{a^{k+1}-1}{a-1}+a^{k+1}$

$$
=\frac{a^{k+1}-1+a^{k+2}-a^{k+1}}{a-1}=\frac{a^{k+2}-1}{a-1}
$$

-

