I will reach

the top by

mathematical

Induction ,

If I can get on the bottom level (Base case) and if on the assumption (Inductive hypothesis) that I have reached some arbitrary level, I can (Inductive step) climb to the next level; then I can (Conclusion) reach any level.

lecture 15

Mathematical Induction

- . Proof technique
- · Proving some properties of integers.
 - e.g. VneN. P(n)
- . In many cases we take N = {0, 1, 2, 3, ... }
- Examples:
 - Prove that $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$ for all $n \in \mathbb{N}$.
 - Prove that every positive integer n can be written as n=m2^k where m is odd

Prove that
$$1+3+5+...+(2n-1) = n^2$$
 for all $n \ge 1$

first n odd numbers

How to prove by induction ?

To prove P(n) is true ¥ n≥no (Typically No=0)

- Base case : Prove P(n.) is true
- Inductive step: Prove VK≥no. P(K) → P(K+1)
 - In other words, assume $P(\kappa)$ is true (inductive hypothesis) and prove $P(\kappa+1)$ is also true.

Example 3.

$$T_0 = 0$$

$$T_{n+1} = T_n T_n$$

 $T_{1} = T_{0}\overline{T_{0}} = 0$ $T_{2} = T_{1}\overline{T_{1}} = 0$ $T_{3} = T_{2}\overline{T_{2}} = 0$ 101001

Inductive step: $\forall k \ge 0$. $P(k) \Longrightarrow P(k+1)$

$$P(k): T_k$$
 has 2^k bits (Inductive hypothesis)
 $P(k+1): T_{k+1}$ has 2^{k+1} bits

TK+1 = TKTK which has $2x2^{k} = 2^{k+1}$ bit. Done.

Example 4. Prove that To starts with 01 for n>1.

Base case: P(1): Ti starts with O1. (True)

Inductive step: $\forall k \ge 1$. $P(k) \Longrightarrow P(k+1)$

P(K): TK starts with 01 (Inductive step)

P(K+1): T++1 starts with 01

TKH = TK TK. TK+1 starts with TK, so it starts with Ol.

Prove that Tn ends in 10 if n is even and in 01 if n is odd, for all $n \ge 1$.

- Base case: P(1): T1 ends in O1. True
- Inductive Step: $\forall \ k \ge 1$. $P(k) \Rightarrow P(k+1)$ P(k): T_k ends in 10 if k is even $T_{KH} = T_k T_k$ p(k): $T_{KH} = T_k T_k$ T_k ends in 01 if k is addK+1 and $\Rightarrow k$ even $\Rightarrow T_k$ ends in 10 $\Rightarrow T_k$ ends in 01 \Rightarrow T_{KH} ends in 01
 - . K+1 even -> you do it.

Prove that N³-n is a multiple of 3 V nEN Base case: $n_0=0$. $P(0): 0^3-0 = 3m$ True Inductive step: $\forall k \ge 0$. $P(k) \Longrightarrow P(k+1)$ $P(k): k^{3}-k = 3m$ (Inductive hypothecis) $P(k+1): (k+1)^{3}-(k+1) = 3m'$

 $(k_{+1})^{5} - (k_{+1}) = k^{3} + 3k^{2} + 3k + 1 - k - 1$ $= (k^{3}-k) + 3(k^{2}+k)$ $= 3m + 3(\kappa^2 + \kappa)$ $= 3(m+k^{2}+k) = 3m'.$

What's wrong with this:

Prove $\sum_{i=1}^{n} i = \frac{n^2 + n + \sqrt{\pi}}{2}$, $\forall n \in \mathbb{N}$

 $P(k): \sum_{\substack{i=1\\i=1}}^{k} i = \frac{k^{2} + k + \sqrt{\pi}}{2} \quad (\text{Inductive hypothesis})$ $P(k+1): \sum_{\substack{i=1\\i=1}}^{k+1} i = \frac{(k+1)^{2} + (k+1) + \sqrt{\pi}}{2}$

 $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k^2 + k + \sqrt{\pi}}{2} + \frac{2(k+1)}{2} = \frac{(k+1)^2 + (k+1) + \sqrt{\pi}}{2}$ 333

Yn≥2. n lines no two of which are // intersect in one point.

Base case: $n_0=2$. P(2): 2 lines not // intersect in one point /

Inductive step: $\forall k \ge 2$. $P(k) \Longrightarrow P(k+1)$

Given K+1 lines li, l2, l3, ..., lk, lk+1 no two of which are // , Consider the two sets of lines · li, l2, l3, ..., lk-1, lk+1 (no two are //) · $l_1, l_2, l_3, \ldots, l_{K-1}, l_K$ (no two are //)

Each set has k lines => all lines in each set intersect in one point, namely the intersection of likl2. Therefore all K+1 lines go through that point !!!!

Here's another of those : For every $n \ge 12$, n = 32 + 7y where $z, y \in \mathbb{N}$. Base case: $n_{0} = 12$. P(12): $12 = 3 \times 4 + 7 \times 0$ Inductive step: $\forall \kappa \not | 2. P(\kappa) \Rightarrow P(\kappa+1)$ $P(\kappa): \kappa = 3\varkappa + 7\gamma$, $\varkappa_{ij} \in \mathbb{N}$ $P(k+1): K+1 = 3x' + 7y', x', y' \in N$ K+1= 3x+7y+1= 3x+7y+7-2x3= 3(x-2) + 7(y+1)Joh?

Recitation: (simple induction) . Prove $\sum_{i=1}^{n} (2i-1) = n^2$ for all $n \ge 0$

. Prove $\sum_{i=0}^{n} a^{i} = \frac{a^{n+i}-1}{a-1}$ for all $n \ge 0$ $(a \ne 1)$

. Prove that a 2"x 2" chess board can be overed

by L-shaped triminos if one squared is removed, for all n>1.

Quick overvien of inductive steps for above. $\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + 2(k+1) - 1 = k^{2} + 2(k+1) - 1$ $= k^{2} + 2k + 1 = (k+1)^{2}$ $\sum_{i=0}^{n} a^{i} = \sum_{i=0}^{n} a^{i}$ $+ a^{k+1} = a^{k+1} + a^$ aktl $1 + a^{k+2} - a^{k+1}$ a^{K+1} _ T 2^k Square removed 2^{k+1}