

Recurrences \& Proofs by Induction
Given an infinite sequence

$$
a_{0}, a_{1}, a_{2}, a_{3}, \ldots
$$

where

- the first few values are given $a_{0}, a_{1}, \ldots, a_{n 0}$
- a_{n} is described in terms of a_{n-1}, a_{n-2}, \ldots (a recurrence)

To prove that $a_{n}=f(n)$ we can use strong induction:

- Base case: verify $a_{n}=f(n)$ for $n \leqslant n_{0}$
- Inductive step: $\forall k \geqslant n_{0} . \widehat{i \leqslant k}^{P(i)} \Rightarrow P(k+1)$

Consider $a_{k+1}=\ldots$ using the recurrence and replace each a_{i} by $f(i)$

Example:

$$
\begin{aligned}
& a_{0}=0 \quad a_{1}=0 \quad a_{2}=1 \quad a_{3}=2 \\
& a_{n}=2 a_{n-1}-2 a_{n-3}+a_{n-4}
\end{aligned}
$$

Prove $a_{n}=\frac{2 n^{2}-1+(-1)^{n}}{8}$ for $n \geqslant n_{0}$
Base case: $\quad a_{0}=\frac{2 \times 0-1+(-1)^{0}}{8}=\frac{0-1+1}{8}=0$

$$
\begin{aligned}
& a_{1}=\frac{2 \times 1-1+(-1)^{1}}{8}=\frac{2-1-1}{8}=0 \\
& a_{2}=\frac{2 \times 4-1+(-1)^{2}}{8}=\frac{8-1+1}{8}=1 \\
& a_{3}=\frac{2 \times 9-1+(-1)^{3}}{8}=\frac{18-1-1}{8}=2
\end{aligned}
$$

Inductive step: Consider $a_{k+1} \longleftrightarrow \begin{cases}2(k+1)^{2}-1+(-1)^{k+1} \\ 8\end{cases}$

$$
\begin{aligned}
a_{k+1} & =2 a_{k}-2 a_{k-2}+a_{k-3} \quad\left(a_{(k+1)}=2 a_{(k+1)-1}-2 a_{(k+1)-3}+a_{(k+1)-4}\right) \\
& =2 \frac{\left(2 k^{2}-1+(-1)^{k}\right.}{8}-2 \frac{2(k-2)^{2}-1+(-1)^{k-2}}{8}+\frac{2(k-3)^{2}-1+(-1)^{k-3}}{8}
\end{aligned}
$$

$$
\begin{aligned}
&: \quad 4 k^{2}-4(k-2)^{2}+2(k-3)^{2}=4 k^{2}-4\left(k^{2}+4-4 k\right)+2\left(k^{2}+9-6 k\right) \\
&=4 k^{2}-4 k^{2}-16+16 k+2 k^{2}+18-12 k \\
&=2 k^{2}+4 k+2=2(k+1)^{2} \\
&: \quad 2(-1)-2(-1)+(-1)=-1 \\
&: \quad 2(-1)^{k}-2(-1)^{k-2}+(-1)^{k-3}=-2(-1)^{k+1}+2(-1)^{k+1}+(-1)^{k+1}=(-1)^{k+1}
\end{aligned}
$$

Another example: [simple]

$$
\begin{aligned}
& a_{1}=1 \quad \text { Prove } a_{n}=2^{n}-1 \\
& a_{n}=2 a_{n-1}+1
\end{aligned}
$$

Base case: $\quad a_{1}=2^{\prime}-1=1 \vee\left(n_{0}=1\right)$

Inductive step: $a_{k+1}=2 a_{k}+1=2\left[2^{k}-1\right]+1$

$$
=2^{K+1}-2+1=2^{K+1}-1
$$

Counting with recurrences

- A recurrence can provide a useful mechanism for counting
- Let's say a_{n} reprensents some count, as a function of n.
- Sometimes, it's easier to describe a_{n} by a recurrence
- Guess what a_{n} is by making enough observations
- Prove it by Induction

We will explore exauples of this framework

Example 1: Given n lines in general position

- No lines are parallel
- No 3 lines intersect in a single point.

Basically, every pair of lines have their own intersection.
How many regions do the n lines define in the plane?

0 lines

1 line

2 lines

3 lines

$$
\begin{aligned}
& R_{0}=1 \\
& R_{1}=2 \\
& R_{2}=4 \\
& R_{3}=7 \\
& R_{4}=11
\end{aligned}
$$

Let $R_{n}=\#$ regions defined by n lines

When the $n^{\text {th }}$ line is added...

It creates $n-1$ new intersections and n new regions

So

$$
\begin{aligned}
& R_{0}=1 \\
& R_{n}=R_{n-1}+n
\end{aligned}
$$

n	0	1	2	3	4	5	6	7	8
R_{n}	1	2	4	7	11	16	22	29	37

Guess $R_{n}=1+\sum_{i=1}^{n} i=1+\frac{n(n+1)}{2}$
Base case: $R_{0}=1+\frac{0(0+1)}{2}=1$

Inductive Step:

$$
\begin{aligned}
R_{K+1} & =R_{K}+(k+1)=1+\frac{k(k+1)}{2}+k+1 \\
& =1+\frac{K(K+1)+2(k+1)}{2}=1+\frac{(K+1)(k+2)}{2} \\
& =1+\frac{(K+1)[(K+1)+1]}{2}
\end{aligned}
$$

Example 2. Tiling with Dominos.
In how many ways can I tile a $2 x n$ rectangle using $2 x 1$ dominos. (we need n dominus)

Let's look at the case of $n=4$.

Looks complicated!
But let's figure out a recurrence...

Let $a_{n}=$ ways we can tile a rectangle of length n. There are two cases, depending on how we start.

In the first case, we continue in a_{n-1} ways In the second case, we contime in a_{n-2} ways.
Since the cases are disjoint (they start differently), using the addition rule

$$
a_{n}=a_{n-1}+a_{n-2}
$$

(Not necessarily fibonacci)

So

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=2 \\
& a_{n}=a_{n-1}+a_{n-2}
\end{aligned}
$$

1	1	2	3	4	5	6	7
1	2	3	5	8	13	21	

Guess $a_{n}=F_{n+1}$
Base case:...

Inductive step: $a_{K_{+1}}=a_{K}+a_{K-1}=F_{K+1}+F_{K}=F_{K+2}$
So $a_{K+1}=F_{(K+1)+1}$.

Example 3 Tower of Hanoi

- Disks numbered I through n from smallest to largest
- All disks are stacked on first peg (see above) with disk 1 on top and disk n at bottom.
- Must move entire stack of disks to last peg
- one disk at a time
- without ever placing a disk on top of a smaller one.
- How many moves are needed?

Spoiler Alert.
If $n=64$ and each move takes 1 second, we need 585 billion years to finish!
The current estimate of the age of the Universe is ≈ 13.8 billion years.

So this game is not practical to play, and yet we can still study it!

Again, let $a_{n}=\#$ moves needed to solve the puzzle.
The Key observation is that at some point, we must move disk n (the longest). So we must have:

- We must move (n-1) disks from first peg to second (Disk n will not be in the way) That's a_{n-1} moves by definition
- Then we move disk n (1 move)

Then we must move (n-1) disks from second peg to third (Disk n will not be in the way)
That's a_{n-1} moves again.
So $\quad a_{n}=a_{n-1}+1+a_{n-1}=2 a_{n-1}+1$
$a_{1}=1 \quad$ (trivial)
Solved before : $a_{n}=2^{n}-1$

- Did we just compute the number of moves or solved the puzzle as well?
- We actually solved the puzzle, but the solution is described recursively.
- To move n disks from 1 to 3
- move $n-1$ dits from 1 to 2 (recursive)
- move 1 disk from 1 to 3
- move n-1 disks from 2 to 3 (recursive)
move 3 disks from 1 to 3

$$
1 \rightarrow 3 \quad 1 \rightarrow 2 \quad 3 \rightarrow 2 \quad 1 \rightarrow 3 \quad 2 \rightarrow 1 \quad 2 \rightarrow 3 \quad 1 \rightarrow 3
$$

(\#disks, from, to

$$
1 \rightarrow 3 \quad 1 \rightarrow 2 \quad 3 \rightarrow 2 \quad 1 \rightarrow 3 \quad 2 \rightarrow 1 \quad 2 \rightarrow 3 \quad 1 \rightarrow 3
$$

