We will be starting in few minutes.

Welcome

Courting:
Graph: Abstraction to represent pairwise relation

- Entities: represented by vertices
- Relations: edges

Planar: Edges do not overlap
face: (planar graphs)
 "area" you can move around without crossing any edges (there is a ways the outer face)

1) Counting helps establish structure. (Euler's formula)
2) Counting helps determine complexity of objects we are dealing with.

\#permutation: $n!=1 \times 2 \times 3 \times \ldots \times n$

$$
\begin{aligned}
n=3: & 1 \times 2 \times 3=6 \\
n=4: & 1 \times 2 \times 3 \times 4=24 \\
n=5: & 1 \times 2 \times 3 \times 4 \times 5=120 \\
\vdots & \\
n=10: & 1 \times 2 \times 3 \times \ldots \times 10=3628800
\end{aligned}
$$

$n=100$: 158 digit number (large)
Can't list all permutation to look for certain properties, we have to do it in a smarter way.

Erouple Counting: Snakes \& Ladders
head > tail

Pros: No thinking required
cons: Placement of snakes \& ladders s, that it's not boring.
Question: In how many ways can
I place one snake on a board with n squares?

$$
3
$$

We have considered all placements of the head. For each Scenario, we counted all possible snakes.
\# of possible placements of 1 snake: $5+4+3+2+1=15$

Generalization for n

n-1

$n-2$

F possible ways: $(n-1)+(n-2)+\cdots+1$

$$
\begin{gathered}
\text { Ex: } n=6: \quad 5+4+\cdots+1=15 \\
1+2+3+\cdots+(n-1) \\
(n-1)+(n-2)+(n-3)+\cdots+1
\end{gathered}
$$

Summations \& Products notations

$$
\begin{aligned}
& 1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
& 1+2+3+\cdots+\underbrace{(n-1)}_{m}=\frac{m(m+1)}{2}=\frac{(n-1) n}{2} \\
& 1+2+3+\cdots+(n-1)=\frac{(n-1) n}{2}=\binom{n}{2}
\end{aligned}
$$

"n Choose 2"

$$
\binom{n}{2}=C_{2}^{n}
$$

Why is

$$
\frac{(n-1)^{n}}{2}
$$

called
"n choose 2"?
Essentially we are choosing 2 squares
 out of n squares!

$$
1+2+3+\cdots+(n-1)=\sum_{i=1}^{n-1} i
$$

"Replace i in E by all values from a to b and add them up"

$$
\begin{aligned}
\text { Our exauple: } & \sum_{i=1}^{n-1} i\left\{\begin{array}{cc}
a=1 & i=1: E=i=1 \\
b=n-1 & i=2: E=i=2 \\
E=i & \vdots \\
& i=n-1: E=i=n-1
\end{array}\right\} \oplus+(n-1)
\end{aligned}
$$

Why is the sum notation \sum good? because it eliminates ambiguity!!
example: Add the first 10 terms of the following sequence
one possibility:

$$
7+11+\cdots
$$

another possibility:

$$
8+16+32+\cdots
$$

this is what I meant!

$$
\begin{aligned}
& \sum_{i=0}^{9} 2^{i}=\underbrace{1+2+4+\cdots \ldots .}_{10 \text { terms }} \\
& \left.\begin{array}{cc}
\frac{i}{0} & \begin{array}{c}
E=2^{i} \\
1 \\
2
\end{array} \\
3 \\
3 & 4 \\
\vdots & 8 \\
9 & 5 / 2
\end{array}\right\} セ \\
& 1+2+4+8+\cdots+512 \\
& \text { \# berms }=\text { upper bound }- \text { lower bound }+1 \\
& =9-0+1=102
\end{aligned}
$$

$n!=1 \times 2 \times 3 \times \cdots \times n=\prod_{i=1}^{n} i$
Special case $(n=0)$

$$
\begin{aligned}
\frac{n(n+1)}{2} & =1+2+\ldots+n=\sum_{i=1}^{n} i \\
n! & =1 \times 2 \times \cdots \times n=\prod_{i=1}^{n} i
\end{aligned}
$$

Remember:
Empty Sum $=0$
Empty product $=1$
empty sum: $\sum_{i=1}^{0} i \quad$ (upper bound <lower bound)
empty prod: $\prod_{i=1}^{0} i \quad$ (" " ")
Empty product : $a^{0}=1$

$$
\begin{aligned}
& a^{\prime}=a \\
& a^{2}=a \times a \\
& a^{3}=a \times a \times a
\end{aligned}
$$

Empty sums \& entry products

Sum

$$
s \leftarrow ?
$$

for $i \leftarrow 1$ to n $s \leftarrow s+i$ returns

product

$$
p \leftarrow ?
$$

for $i \leftarrow 1$ to n $p \leftarrow p \times i$ return p

$$
n!=\prod_{i=1}^{n} i
$$

for each program

- Replace? by appropriate number
- Determine the return value when $n=0$

Take home message
$n!=\prod_{i=1}^{n} i=\#$ permutations on n objects

$$
1+2+\cdots+(n-1)=\frac{n(n-1)}{2}=\sum_{i=1}^{n-1} i=
$$

\# pairs given n objects
Empty sum (e.g. $n=1$ in above sum n) is 0 Empty product (eeg. $n=0$ in above prod.) is 1 So $0!=1$

