

Not Just Geometry!

$$
\operatorname{gcd}(a, b)=a r-b s
$$

Example:

300	18	12	6
1	0	1	0
0	1	-16	3
17	-50		

$$
\begin{aligned}
\operatorname{gcd}(300,18) & =300(-1)+18(17) \\
& =300(-1)-18(-17) \quad(a r-b s) \\
& =300(-1+18)-18(-17+300) \\
& =300(17)-18(283) \\
& \geqslant 0 \quad \geqslant 0
\end{aligned}
$$

Application of Euclidean Alg.
Check if numbers are co-prime.
(They have only 1 common divisor, they share no prime factors)
Definition: a and b are co-primes $\Longleftrightarrow \operatorname{gcd}(a, b)=1$

We can conclude that (Extended Euclidean alg.)

$$
\begin{aligned}
a \& b \text { are co.primes } & \Rightarrow \operatorname{gcd}(a, b)=1 \\
& \Rightarrow \exists r, s \geqslant 0 . \text { ar }-b s=1
\end{aligned}
$$

The reverse direction also true. Assume $d \mid a \wedge d / b$

$$
a r-b s=1 \Rightarrow \underbrace{m d}_{a} r-\underbrace{n d s}_{b}=1 \Rightarrow d(m r-n s)=1 \Rightarrow d=1
$$

a \& b co-primes
Definition

$$
a r-b s=1
$$

$$
\operatorname{gcd}(a, b)=1
$$

Euclidean Alg.

All these statement are equivalent

- a \& b are co-primes
- a \& b have only one common divisor (it's 1)
- a \& b share no prime factors
- $\operatorname{gcd}(a, b)=1$
- $\exists r_{1} s \geqslant 0 . \quad a r-b s=1$.
- Also, we say a \& b are relatively prime.

Prime numbers
Definition: A prime number p is an integer such that

$$
\begin{aligned}
& -p \geqslant 2 \\
& -d \mid p \Rightarrow(d=1 \vee d=p)
\end{aligned}
$$

In English, p is divisible by (a multiple of) only 1 and p. If a number $\neq 1$ is not prime, it's called composite.
Two facts:
[Prime factorization]
Every number >0 can be expressed as a product of primes
[Fundamental theorem of aritumetics]
Prime factorization is UNIQUE
proofs:
see notes

Some nice properties of primes: (below p is prime)

- $p \mid a b \Rightarrow(p|a \vee p| b)$

Proof: $p \mid a b \Rightarrow a b=m p$ ($a b$ is a multiple of p) factor a, b, and m into primes. Since $a b$ and $m p$ are the same number, and prime factorization is unique p must appear on the left as one of the factors. So p is a factor of a or a factor of b (or both)

Note: the statement is not true if p is not prime.

$$
10 \mid 4 \times 5 \text { but } 10 \nmid 4 \wedge 10 \nmid 5 \text {. }
$$

- $p|b \wedge p \nmid a \Rightarrow p| \frac{b}{a} \quad$ (if $\frac{b}{a}$ is integer)
let $\frac{b}{a}=k$. Then $b=a k \Rightarrow \underbrace{m p}_{b}=a k$
Using the uniqueness, q must be one of the prime factor of ak, so

$$
p \mid a k \Rightarrow(p|a \vee p| k)
$$

But $p \nmid a$. Therefore $p \mid k$.
Also not necessarily true if p is not prime.

$$
\text { egg. } 4 \mid 12 \wedge 4 \nmid 6 \text {, but } 4 \times \frac{12}{6}=2
$$

Conclusion: P is prime, then

- if p divides a product, it must divide one of the factors
- if p divides the numerator, but not the denominator, it must divide the ratio.
- other properties can be found in the notes

Equivalence Relation
Consider a set S and a relation R on $S \times S$
We will use the notation 三 when balking about "equivalence" $a \equiv b$ to mean $(a, b) \in R$.
R is an equivalence relation on S means:
Reflexive : $a \equiv a \quad(a, a) \in R$
Symmetric: $a \equiv b \Rightarrow b \equiv a \quad(a, b) \in R \Rightarrow(b, a) \in R$
Transitive: $(a \equiv b \wedge b \equiv c) \Longrightarrow a \equiv c \quad(a, b) \in R$

$$
\begin{gathered}
(a, b) \in R \\
(b, c) \in R
\end{gathered} \Rightarrow \begin{gathered}
(a, c) \\
\in R
\end{gathered}
$$

Example: ' $=$ ' is an equivalence relation on \mathbb{R}

An equivalence relation on S partitions S into sets called classes of equivalence.
For all $a \in S$, define

$$
\begin{aligned}
C_{a} & =\{x \in S: a \equiv x\} \\
& =\{x \in S:(a, x) \in R\}
\end{aligned}
$$

Example: $\quad S=\{a, b, c, d\}$

$$
\begin{array}{r}
R=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, c),(a, c),(b, a),(c, b),(c, a)\} \\
C_{a}=\{a, b, c\} \quad C_{b}=\{b, a, c\} \quad C_{c}=\{c, a, b\} \quad C_{d}=\{d\}
\end{array}
$$

Two classes of equivalence

In general:

$$
\begin{aligned}
& \bigcup_{a \in S} C_{a}=S \quad\left(\text { obvious, } \forall a \in S . a \in C_{a} \text { Amice } a \equiv a\right) \\
& C_{a} \cap C_{b} \neq \phi \Rightarrow C_{a}=C_{b}
\end{aligned}
$$

Proof: Assume $C_{a} \cap C_{b} \neq \phi$

$$
e \in C_{a} \Rightarrow a \equiv e
$$

$$
e \in C_{b} \Rightarrow b \equiv e
$$

$$
x \in C_{a} \Rightarrow \underbrace{a \equiv x}_{\text {summetric }} \begin{aligned}
& a \equiv e \Rightarrow e \equiv a
\end{aligned} \Rightarrow \underbrace{\begin{array}{c}
b \equiv e \\
e \equiv x
\end{array} \Rightarrow b \equiv x \Rightarrow x \in C_{b}}_{\text {transitive }}
$$

So $C_{a} \subset C_{b}$. Similarly $C_{b} \subset C_{a}$. Therefore $C_{a}=C_{b}$

Congruence
Notation: $\quad a \equiv b(\bmod n) \quad$ egg. $7 \equiv 22(\bmod 5)$

- a \& b have the same remainder in the division by n
- $n \mid a-b \quad(\underbrace{a-b}$ is a multiple of $n)$ could be negative, it's ok.
- We say " a is congruent to b modulo n "

Congruence is an equivalence relation. [from definition]

$$
\begin{aligned}
a & \equiv a \\
a & \equiv b \Rightarrow b \equiv a \\
(a & \equiv b \wedge b \equiv c) \Rightarrow a \equiv c
\end{aligned}
$$

Example: $n=7$, and the set $\mathbb{Z} .7$ Equivalence classes

$$
\begin{aligned}
& \{\cdots,-21,-14,-7,0,7,14,21, \ldots\} \\
& \{\ldots,-20,-13,-6,1,8,15,22, \ldots\} \\
& \{\ldots,-19,-12,-5,2,9,16,23, \ldots\} \\
& \{\ldots,-18,-11,-4,3,10,17,24, \ldots\} \\
& \{\cdots,-17,-10,-3,4,11,18,25, \ldots\} \\
& \{\ldots,-16,-9,-2,5,12,19,26, \ldots\} \\
& \{\cdots,-15,-8,-1,6,13,20,27, \ldots\}
\end{aligned}
$$

Every number is equivalenent to $0,1,2,3,4,5$, or 6 .

- Imagine a "new world" of numbers where all numbers are $\{0,1,2,3,4,5,6\}$
- Not very imaginary! days of the week.

$$
\begin{aligned}
3+12 \equiv 1(\bmod 7) & (15 \text { is } 1) \\
\text { Wed }+12 \text { days }=\text { Monday } & 12 \equiv 5(\bmod 7) \\
\equiv \text { "behaves like" }= & 3+12 \equiv \underbrace{3+5}_{8} \equiv 1
\end{aligned}
$$

