Welcome to lecture 3
we will start in few minutes

$$
(n-1)+(n-2)+(i-1)+\cdots+1+0
$$

Example: $n=100 \Rightarrow 1+2+3+\cdots+99$
We considered disjoint categories of snakes. We can talk about set (Read last Section in chapter 0)

Remark: $|S|$ is the size of set S when S in finite

Addition Rule: Given k sets $S_{1}, S_{2}, \ldots, S_{k}$ that are disjoint $\left(\sin s_{j}=\phi\right)$, then the total \# elements in their union is:
air union is:

Example:

$$
\left|S_{1} \cup S_{2}\right|=12 \neq 8+6
$$

$$
\left|s_{1} v s_{2}\right|=14=8+6
$$

(*) why don't we mulliph: $\left|s_{1}\right| x\left|s_{2}\right| x \cdots x\left|s_{k}\right|$? If ne want to chase one from each set then we do.

A program to count all possible placements of one snake

for each head, go through all possible tails
$S \longleftarrow 0$
for $i \leftarrow 1$ to n (head) $\begin{aligned} & \text { for } j \leftarrow 1 \text { to } \quad ? \text { ? } \\ & \text { do } s \leftarrow s+1 \pi_{i-1}\end{aligned}$
Sum notation:

$$
\begin{aligned}
& \quad \sum_{i=1}^{n}\left(\sum_{j=1}^{i-1} 1\right)=\sum_{i=1}^{n}(i-1)=\sum_{i=1}^{n} i-\underbrace{\sum_{i=1}^{n} 1} \quad \text { (splitting sum) } \\
& \text { or: } \sum_{i=1}^{n}(i-1)=0+1+2+\cdots+n-1=n(n-1) / 2
\end{aligned}
$$

A snake is essentially two squares:

$(2,10)$

To count something, describe a procedure (procedure must be general to generate one possible outcome enough to produce all)

Example: $n=4$
Choose 1 square
choose another square

$$
4 \times 3=12
$$

$\frac{4 \times 3}{2}=6($ over counting by 2$)$

Product Rule: If a task (procedure) consists of k phases, and phase i can be carried out in α_{i} ways, INDEPENDENJLY of previous phases, then the entire task can be carried out in $\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{k}=\prod_{i=1}^{k} \alpha_{i}$ ways.

Snake problem in general

1. choose a square n ways
\# Snakes $=\frac{n(n-1)}{2}$ because $(i, j) \equiv(j, i)$ product rule overcounts by 2 here

Snakes on a chessboard (Assume n is even, 64 here)

New rule: head \& tail must have same color. (still head> tail)

1. Choose a square n ways
2. Choose another square

Understand independent:
If I choose black in phase 1 I must choose black in of the same color
$\frac{\cdots \sqrt{\frac{n}{2}-1} \text { ways }}{n\left(\frac{n}{2}-1\right)}$ phase 2 (dependent?). But the \# ways I can carry out phase 2 is independent of choice in phase 1 !! (so good) ans: $\frac{n\left(\frac{n}{2}-1\right)}{2}=\frac{n}{2}\left(\frac{n}{2}-1\right)$

Another way
(Black snake)
(white Snake)

1. Choose a black square
$\cdots \cdot \frac{n}{2}$
2. Choose another black square do the same

$$
\text { (product rule) } \overline{\frac{n}{2} \cdot\left(\frac{n}{2}-1\right)}
$$

And since we are over counting by $2 \Rightarrow \frac{n}{4}\left(\frac{n}{2}-1\right)$

$$
\frac{n}{4}\left(\frac{n}{2}-1\right)
$$

(Disjoint)
(Addition Rule)

$$
\frac{n}{2}\left(\frac{n}{2}-1\right)
$$

Place two snakes: (back to regular board, not chess)
snake 1 $\left\{\begin{array}{l}1 . \text { Choose a square }\end{array}\right.$ n way
Snake $2\left\{\begin{array}{l}3 . \text { Choose another } \ldots . . n \\ 4.2 \text { ways } \\ 4 . \text { chose another } \ldots . . n-3 \text { ways }\end{array}\right.$
(product rale) $\overline{a(n-1)(n-2)(n-3) / 8}$
Overcount: Each outcome is counted B times
$(1,2)(3,4)$
Example:

$$
\begin{array}{ll}
(1,2),(3,4) \tag{1,2}\\
2 \pi & \uparrow, 2 \\
2
\end{array} \quad 2 \times 2 \times 2=8
$$

(2,1) $(3,4)$
$(2,1)(4,3)$

