Welcome to [eccluste a]
$\binom{n}{2}$ "theunes"

n_{1}	1	1	
	a		
1	2	3	

- Two squares define a snake
- How many possible snakes?
- In how many ways can we select 2 squares out of n ?

$$
\binom{n}{2}=\frac{n(n-1)}{2} \quad(\text { also }=1+2+\cdots+(n-1))
$$

Product rule:

1. choose a square \qquad
2. Choose another square $\frac{. .(n-1) \text { ways }}{n(n-1)}$
over counting by 2. Answer $n(n-1) / 2$.

Abstracting the idea of pairs...

Let's say we have n people

And they all shook hands, how many handshakes do we count?

A handshake is defined by 2 people. so again, this is equivalent to the number of pairs $\binom{n}{2}=\frac{n(n-1)}{2}$

Given a graph with a vertices and all possible edges

How many edges ane there?
Again, ($\left.\begin{array}{l}n \\ 2\end{array}\right)$

$$
n=5:\binom{5}{2}=\frac{5 \times 4}{2}=10
$$

Every vertex "secs" $(n-1)$ edges so $n(n-1)$, but we overcount by 2 because every edge is counted twice, once from each end.

Generalization: The handshake Lemma

Degree of vertex
\# edges touching it
Add up all degrees: $1+1+3+4+2+2+5+1+1=20$ \#edges $=10$
Let $d_{i}=$ degree of vertex i, given n vertices

$$
d_{1}+d_{2}+\cdots+d_{n}=\sum_{i=1}^{n} d_{i}=2 . \# \text { edges }
$$

Other conclusions: $\sum_{i=1}^{n} d_{i}$ is always even
\# odd-degree varices is always even (counting establishes structure)
"n choose 2" $\binom{n}{2}$ in a set setting.
Given a set S with n elements

$$
\text { e.g. } S=\{1,2,3, \ldots, n\}
$$

How many subsets of S contain two elements? In other words, what's the number of subsets of size 2? Also ($\left.\begin{array}{l}n \\ 2\end{array}\right)$
Example: $S=\{1,2,3,4\}$ and $\binom{4}{2}=\frac{4 \times 3}{2}=6$ There are 16 subsets (including the empty y subset) But the subsets of size 2 are

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}
$$

So $\binom{n}{2}$ is the number of ways we can select 2 out of n without order.

Boys \& Girls

In how many ways we can make a couple? (a boy \& a girl)

1. choose a boym ways
2. Choose a girl …..n ways $\frac{n \times n}{m \times n}$

we can't permute choices of phase 2 and phase 1 (Different sets)
pst phase always generates a boy $2^{\text {nd }}$ phase always generates a girl.

What if we want to choose any 2 people in the previoss example?

1. Choose a person.......... $m+n$ ways
2. Choose another person … $m+n-1$ wayp

Is there overcounting?

$$
\text { Yes, by } 2 \text {. So } \frac{(m+n)(m+n-1)}{2}=\binom{m+n}{2}
$$

Using the addition rule, we conclude

$$
\begin{gathered}
\binom{m}{2}+\binom{n}{2}+\begin{array}{c}
m \cdot n
\end{array}=\binom{m+n}{2} \\
\text { two boys two girls } \begin{array}{c}
\text { a boy \& } \\
\text { a girl }
\end{array}
\end{gathered}
$$

Disjoint categories

Be careful how we look at pairs:

$$
\binom{n}{2} \neq \frac{n}{2}
$$

$\binom{n}{2}$: In how many ways we can select a pair or equivalently all possible pairs
$\frac{n}{2}$: (when n even) number of pains that can exist simultaneously
Example: $n=4$

This leads to another question.
In how many ways can we make simultaneous pairs; e.g. teams of 2 .

When 4 people, the answer is 3.
That's not $\binom{4}{2}$ and not $\frac{4}{2}$ What is it?

Assume we have $2 n$ people (to make it even). In how many ways can we make n teams?

1. Choose a person In ways 2. Choose another2n-1 way $\operatorname{Team}\left[\begin{array}{l}3 . \text { choose another } \ldots \ldots . .2 n-2 \text { ways } \\ 4 . \text { choose another } \ldots . . .2 n-3 \text { ways }\end{array}\right.$
Team $n\left[\begin{array}{c}2 n-1 \text {. choose another2 ways } \\ 2 n \text {. choose another } \ldots . . .1 \text { way } \\ (2 n)!\end{array}\right.$

$$
n=2 \Rightarrow 4!\neq 3 \quad \neq 2 n!
$$

Lets look at overcounting.

- Permuting choices within a team results in the same outcome, that's an overcount of 2 per team
- Permuting teams can be done in $n!$ ways.

Total overcount is $2^{n} n!$
Answer: $\frac{(2 n)!}{2^{n} n!} \quad$ ty $n=2 \quad \frac{4!}{2^{2} \times 2!}=\frac{4 \times 3}{4}=3$
Example: $n=3 \Rightarrow 6$ people
$A, B \quad C, D \quad E, F$
permuting people with team
permuting teams
$A B \quad C D \quad E_{l} F$
$A B \quad E F \quad G D$
CID $A, B \quad E_{1} F$
CID E IF A, B
EFF $\quad A, B \quad C, D$
$2 \times 2 \times 2=2^{3}$, In general 2^{n}.
$\overbrace{3!\text { In general } n!}^{E_{1} F}$

Another way.

1. Choose 2 people....
$\binom{2 n}{2}$ ways
2. Choose another 2 people.... $\binom{2 n-2}{2}$ ways
n. Choose another 2 people.... $\binom{2}{2}$ ways

$$
\binom{2 n}{2}\binom{2 n-2}{2}\binom{2 n-4}{2} \cdots\binom{2}{2}
$$

Now we don't overcount due to permutations within tran, because the "choose 2" takes care of that.
We can still permute the n teams in n! ways, so we are overcounting by that much.

Answer: $\quad \frac{\binom{2 n}{2}\binom{2 n-2}{2}\binom{2 n-4}{2} \cdots\binom{2}{2}}{n!}=\frac{\prod_{i=0}^{n-1}\binom{2 n-2 i}{2}}{n!}$

Exercices: Verify $\prod_{i=0}^{n-1}\binom{2 n-2 i}{2}$ has exactly n terms in the prod, and generates

$$
\binom{2 n}{2}\binom{2 n-2}{2}\binom{2 n-4}{2} \cdots\binom{2}{2}
$$

- Using $\binom{n}{2}=\frac{n(n-1)}{2}$, verify that above is equal to $\frac{(2 n)!}{2^{n}}$
- Using $\binom{n}{2}=\frac{n(n-1)}{2}$, verify that

$$
\binom{m}{2}+\binom{n}{2}+m n=\binom{m+n}{2}
$$

