

Question: How many ways we can select k out of n ?

- Order is relevant
- Order is not relevant

Example: $\binom{n}{2}=$ \# ways we can select 2 ont of n with no order
n people

$$
\begin{array}{llll}
\text { 只 } & \text { 最 } \\
A & B & \ldots
\end{array}
$$

n chair $\quad H_{1}{\underset{2}{2}}_{H_{2}} \cdots \cdots{ }_{n}$
In how many ways can I seat people on chairs?
High level thinking: It's just a permutation $\Rightarrow n$!
"Primitive way":

1. choose a person for chair $1 \ldots . . n$ ways
2. choose a person for chair 2.... (n-1) ways
n. choose a person for chair n 1 way
product rule: $n(n-1)(n-2) \ldots 1=n$!
(This procedure does not overcount)

Another procedure:

This procedure overcounts by n!
Ex: $n=3 \quad(A, 1) \quad(B, 2)(C, 3) \quad$ In general, we have
$(B, 2) \quad(c, 3) \quad(A, 1)$ n ! permutation that are equivalent.

k chairs $\underbrace{h h \ldots h}_{k}$
The procedure can be generalized to this setting where $k \leqslant n$.

1. choose a person for chain $1 \ldots . . n$ ways $n-(1-1)$

2 chose anther person for chain 2...($n-1)^{\text {way }} n-(2-1)$
k. choose another person for chain $k \ldots \frac{n-(k-1)}{n-k+1}$ ways
product rule: $n(n-1)(n-2) \ldots \ldots(n-k+1)$
example: $k=n \Rightarrow n(n-1)(n-2) \ldots$ (1) $=n$!

So far: (If I were to continue)

$$
\frac{n(n-1) \cdots(n-k+1) \cdot \overbrace{(n-k)(n-k-1) \ldots 1}^{(n-k)!}}{(n-k)!}=\frac{n!}{(n-k)!}=\prod_{i=0}^{k-1}((n-i)
$$

Conclusion: In how many ways I can select k out of n with order

The number of k-permutations
Example: $k=n \Rightarrow \frac{n!}{(n-k)!}=\frac{n!}{(n-n)!}=\frac{n!}{o!}=\frac{n!}{1}=n!$

$$
\begin{aligned}
& k=1 \Rightarrow \frac{n!}{(n-k)!}=\frac{n!}{(n-1)!}=\frac{n \times(n-1) \times \ldots \times x)}{(n-1) \times \cdots \times!}=n \\
& K=0 \Rightarrow \frac{n!}{(n-k)!}=\frac{n!}{(n-0)!}=\frac{n!}{n!}=1
\end{aligned}
$$

What if it does not matter where someone sits as long as they sit?

Example:

My previous procedure overcounts by \# ways I can permute the choices of k phases $\Rightarrow k$!

$$
\binom{n}{k}=\sqrt{\frac{n!}{k!(n-k)!}}
$$

\# ways I can select k out of n without order "n choose k "

$$
\frac{n!}{(n-k)!} \geqslant\binom{ n}{k}
$$

ordered unordered

$$
\begin{aligned}
& \binom{n}{k}=\left\{\frac{n!}{k!(n-k)!}\right\} \\
& k=2: ? \frac{n!}{2!(n-2)!}=\frac{n(n-1)(n-2) \ldots x}{2(n-2) \cdots x}=\frac{n(n-1)}{2} \\
& k=1: ? \frac{n!}{1!(n-1)!}=n . \\
& k=0: ? \frac{n!}{0!(n-0)!}=\frac{n!}{1 \cdot n!}=1 .
\end{aligned}
$$

What if I want to select k out of n with order, but I can repeat my choice? ($k \leqslant n$ or $k \geqslant n$)

1. Choose one n ways
2. choose one n ways
K. choose one $\frac{n \text { ways }}{n^{k} \text { ways }}$

Example: How many 7 letter words can I make using the alphabet $\{a, b, c\}$ $n=3, k=7$ Therefore 3^{7}.

Select k out of n

