

Welcome to Lecersme go

Sets, Relations, function
(and more ?...)

* A set is an unordered collection of clements ex: $S=\{x, y, z\}=\{y, x, z\}$
$* x^{s}$
$x \in S \quad x$ is an element of S

$T \subset S \quad T$ is a subset of S (both are sets)
Every element of T is an clement of S
* $\phi=\{ \}$ is the empty set
* $\phi \subset s \quad \phi$ is a subset of every set (why?)
* SCS a set is a subset of itself
* $T=S$ means $T \subset S$ and $S \subset T$ (Equality)
* When $T \subset S$ and $T \neq S$, we day T is a proper subset of S

Negations (scratch the Symbol)
$T \neq S$ " T is MOT equal to S "
$x \notin S \quad$ " x is NoT an element of S "
$T \notin S$ "T is NoT a subset of S "
Size of a set (also called cardinality) when \mathcal{E} is finite, $|S|$ is site of S
Qa: $\quad S=\{a, b, c\}$

Examples of sets of numbers
$\mathbb{N}=\{1,2,3, \ldots\}=\{x \mid x$ is a positive integer $\}$
" "such that"

$$
\begin{aligned}
\mathbb{Z} & =\{\cdots-3,-2,-1,0,1,2,3, \ldots\} \\
& =\{x \mid x \text { is an integer }\}
\end{aligned}
$$

$\mathbb{Q}=\left\{x \left\lvert\, x=\frac{a}{b}\right.\right.$ where $\left.a \in \mathbb{Z}, b \in \mathbb{N}\right\}$
This is the set of rational numbers

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{B}
$$

Intersection \& Union

$$
S_{n} T=\{x \mid x \in S \text { and } x \in T\}
$$

$\operatorname{suT}=\{x \mid x \in S$ or $x \in T\}$ not exclusive or

Product of two sets (also called cartesian prod.)

* $S \times T=\{(x, y) \mid x \in S$ and $y \in T\}$ (Not symmetric) $S_{X} T \neq T_{X} S$
$E_{x}: \quad \delta=\{a, b, c\} \quad T=\{1,2\}$

$$
\begin{aligned}
& S \times T=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\} \\
& W_{1}=(a, 1) \neq(b, a) \quad(\text { but }\{a, 1\}=\{1, a\})
\end{aligned}
$$

* $|S \times T|=|S| \times|T| \quad$ (Real product rule)

To generate a pair: 1. chase an clemencent of S....|s| ways
2. chose an element of $T \frac{\cdots \cdot|T| \text { ramp }}{|s| x|T| \text { ways }}$

Intersection, Union, Product can be generalized to multiple sets

$S_{1} \cap S_{2} \cap S_{3}$
$\left\{x \mid x \in S_{1}\right.$ and $x \in S_{2}$ and $\left.x \in S_{3}\right\}$

$$
S_{1} \cup S_{2} \cup S_{3}
$$

$$
\left\{x \mid x \in S_{1} \text { or } x \in S_{2} \text { or } x \in S_{3}\right\}
$$

$$
S_{1} \times S_{2} \times S_{3}=\left\{(x, y, z) \mid x \in S_{1} \text { and } y \in S_{2} \text { and } z \in S_{3}\right\}
$$

Side Remark: $S_{1} \cap S_{2} \cap S_{3} \cap \ldots \cap S_{n}=\bigcap_{i=1} S_{i}$
(same for Union)

Example product of 3 sets

$$
\begin{aligned}
S= & \{a, b, c\} \\
T= & \{1,2\} \\
R= & \{0, \diamond\} \\
S \times T \times R= & \left\{\begin{array}{l}
(a, 1, v),(a, 1, \diamond),(a, 2, v),(a, 2, \Delta), \\
\\
\\
\\
\\
\\
\\
\\
(b, 1, v),(b),(c, 1, \diamond),(b, 2, v),(b, 2, \diamond),(c, 2, v),(c, 2, \Delta)\}
\end{array}\right.
\end{aligned}
$$

Relations
A relation from S to T is a subset of $S \times T$
Example:

$$
\begin{aligned}
& S=\{G 0, \text { Too, Yoyo }\} \\
& T=\{2,3,4\}
\end{aligned}
$$

$$
R_{1}=\left\{\left(T_{00}, 2\right),\left(Y_{0} Y_{0}, 2\right)\right\}
$$

Not a function

$$
R_{2}=\left\{(60,2),(700,3),\left(y_{0} y_{0}, 4\right)\right\}
$$

 a function

Every element in S is mapped to exactly one element in T

Some notation (and definitions)
$f: X \rightarrow Y$

- A function that maps the elements of X to elements of Y
X : Domain of function f.
Y : Co Domain of function f
- Evaluating the function at each element of X produces
 the image of X (subset of Y in green)
- When the inuage is the entire set Y we call the function onto

Function: for All $x \in X$, there Exists only one $y \in Y$ such that $f(x)=y$
Notation: $\forall \forall x \in X$. ヨ only one $y \in Y . f(x)=y$

$$
\begin{aligned}
& \text { for every } \\
& \text { element } x
\end{aligned}\left\{\begin{array}{l}
\text { All } \\
\text { Exists }
\end{array}\right.
$$

\qquad (universal quantifier)
\qquad (existential quantifier)
Exercise: which of the following are functions?

Exercice: Write the meaning of onto using \forall and \exists.

Another property of functions:
one to one: For all x_{1} and x_{2} in x_{1},

$$
\text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

$\begin{aligned} \text { Notation: if } A, \text { then } B \rightarrow & A \Rightarrow B \\ & (A \text { implies } B)\end{aligned}$
Exercise: Write definition of one to one using symbols in the following set.

$$
\{\forall, \exists, \Rightarrow\}
$$

(you don't have to use all of them)

A functions that is both onto and one to one is called a bijection, or a
one to one correspondence

Exersice
$f: \mathbb{Z} \rightarrow \mathbb{N}$

$$
f(x)=|x|+1
$$

$$
g: N \rightarrow \mathbb{Z}
$$

$$
g(x)=2 x
$$

$h: \mathbb{N} \rightarrow\{2,4,6,8, \cdots\} \quad$ Yes Yes Yes

$$
h(x)=2 x
$$

$\frac{\text { onto }}{\text { Yes }}$		one to one
N_{0}	bijection	
N_{0}		
N_{0}	$Y_{\text {es }}$	N_{0}

Illustrations

not onto not one to one

one to one not onto

onto not one to one

bijection
bijection means

$$
|X|=|Y|
$$

and we tare this to mean "equal size" for infinite sets

$$
f: X \rightarrow Y
$$

onto: : $\forall y \in Y . \exists x \in X . f(x)=y$
one to one: $\forall x_{1} \in X . \forall x_{2} \in X .\left(x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)$ or $\forall x_{1}, x_{2} \in X \cdot\left(x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)$

In simple terms

function: there is exactly one outgoing arrow for each x

1) onto: there is at least one incoming arrow for each y
2) one to one: there is at most one incoming arrow for each y
3) bijection: 1) and 2), there is exactly one incoming arrow for each y

$$
\text { Bijective function } \Longrightarrow|X|=|Y|
$$

