In how many ways can we seat one person on one chair?

We learned that the number of integer solutions to

$$
\begin{gathered}
x_{1}+x_{2}+\cdots+x_{n}=k \\
x_{i} \geqslant 0
\end{gathered}
$$

$$
\text { is }\binom{n+k-1}{n-1}
$$

Example: How many integer solutions are there for

$$
x_{1}+x_{2}+x_{3}=15 \quad x_{i} \geqslant 0
$$

here $n=3, k=15$ so

$$
\binom{3+15-1}{3-1}=\binom{17}{2}=\frac{17 \times 16}{2}=136
$$

What if?

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=15 \\
x_{1} \geqslant 0 \\
x_{2} \geqslant 3 \\
x_{3} \geq 0
\end{gathered}
$$

$$
\begin{aligned}
x_{2} \geqslant 3 \Rightarrow & x_{2}=3+y_{2} \quad \text { where } y_{2} \geqslant 0 \\
& x_{1}+\left(3+y_{2}\right)+x_{3}=15 \\
& x_{1}+y_{2}+x_{3}=12 \\
& x_{1} \geqslant 0 \quad y_{2} \geqslant 0 \quad x_{3} \geqslant 0
\end{aligned}
$$

Solve as before: $\binom{3+12-1}{3-1}=\binom{14}{2}$

Application:
Recall: \# of binary words with n bits 2^{n}

- \# of binary words with n bits and k 1's

$$
\binom{n}{k}
$$

- \# of binary words with n bits and k 1's and no consecutive 1's?
Example: How many binary words have 10 bits, 3 Is, and no consecutive 1's?

$$
\text { e.g. } 0010001010
$$

The 3 1's divide the d's into 4 groups

let let $x_{2}=1+y_{2}$ and $x_{3}=1+y_{3} \quad y_{i} \geqslant 0$

$$
\begin{aligned}
& x_{1}+y_{2}+y_{3}+x_{4}=5 \\
& x_{1} \geqslant 0 \quad y_{2} \geqslant 0 \quad y_{3} \geqslant 0 \quad x_{4} \geqslant 0
\end{aligned}
$$

answer:

$$
\binom{4+5-1}{4-1}=\binom{8}{3}
$$

Why $\binom{8}{3}$? There is another way to think about the problem by considering all o's

$$
.0 .0 .0 .0 .0 .0 .0 .
$$

The 7 o's define 8 positions as show above. Each position can take of most one 1. To place the 3 1's, we have to choose 3 positions ot of 8. So $\binom{8}{3}$.

The Binomial Coefficients
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$ are called the
Binomial Coefficients
Sone propaties:
(we will see why)

$$
\binom{n}{k}=\binom{n}{n-k} \quad \text { example: }\binom{5}{3}=\binom{5}{2} \text { why? }
$$

[symmetry]

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad 0<k<n
$$

[Pascal Triangle]

$$
\text { ex: }\binom{5}{3}=\binom{4}{2}+\binom{4}{3}
$$

The Pascal Triangle
row o
row 1
row 1
row 2
row $3 \quad\binom{3}{0}\left|\binom{3}{1} 3 \quad\binom{3}{2} 3 \quad\binom{3}{3}\right|$ $146\binom{4}{2} 4\binom{4}{3} 1$

$$
\begin{aligned}
& (x+y)^{0}=1 \\
& (x+y)^{1}=1 x+1 y \\
& (x+y)^{2}=1 \cdot x^{2}+2 x y+1 y^{2}
\end{aligned}
$$

$$
(x+y)^{3}=1 \cdot x^{3}+3 x^{2} y+3 x y^{2}+1 \cdot y^{3}
$$

\vdots

$$
(x+y)^{n}=\text { binomial }
$$

$$
+1-6+15-20 \quad 15 \quad 6
$$

polynomial of 2 variables

$$
\begin{aligned}
(x+y)^{3}= & (x+y)(x+y)(x+y) \\
& (\underbrace{\left(x^{2}+x y+y x+y^{2}\right)(x+y)} \\
& \left(x^{2}+2 x y+y^{2}\right)(x+y) \\
& x^{3}+x^{2} y+2 x^{2} y+2 x y^{2}+x y^{2}+y^{3} \\
& x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
$$

The Binomial theorem:

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{\prime}+\binom{n}{2} x^{n-2} y^{2}+\cdots\binom{n}{n} x^{0} y^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
\end{aligned}
$$

proof: $\underbrace{(x+y)(x+y) \cdots(x+y)}_{n}=\cdots \sqrt[?]{ } x^{n-k} y^{k} \ldots$ To generate $x^{n-k} y^{k}$ xe have to pick k of the n factors to contribute y, that can be done in $\binom{n}{k}$ ways.

Example: $(x+y)^{3}=\ldots x y^{2} \ldots$

$$
\begin{aligned}
& (x+y)(x+y)(x+y) \\
& (x+y)(x+y)(x+y) \\
& (x+y)(x+y)(x+y)
\end{aligned}
$$

There are $\binom{3}{2}$ ways of contributing the y^{2}

Ir $(x+y)^{n}$, all terms are of the form $x^{a} y^{b}$ where $a+b=n$, so $\quad(b=n-a)$

$$
\binom{n}{a}=\binom{n}{b} \quad[\text { symmetry }]
$$

Examples:

$$
\begin{aligned}
(1+1)^{n} & =\binom{n}{0} 1^{n} 1^{0}+\binom{n}{1} 1^{n-1} 1^{1}+\binom{n}{2} 1^{n-2} 1^{2}+\cdots\binom{n}{n} 1^{0} 1^{n} \\
& =\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots\binom{n}{n}=2^{n}
\end{aligned}
$$

sum of binomial coefficients of row n is 2^{n}.
(Familiar quantity?) $\binom{n}{k}=\#$ subsets of size k
so $\sum_{k=0}^{n}\binom{n}{k}=$ total \# subsets $($ addition rule $)=2^{n}$

$$
\begin{aligned}
& (1-1)^{n}=\binom{n}{0} 1^{n}(-1)^{0}+\binom{n}{1} 1^{n-1}(-1)^{1}+\binom{n}{2} 1^{n-2}(-1)^{2}+\cdots\binom{n}{n} 1^{0}(-1)^{n} \\
& (1+(-1))^{n} \\
& (x+y)^{n}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots+(-1)^{n}\binom{n}{n}=0^{n}
\end{aligned}
$$

When $n>0$, the answer is 0 .
So $\quad\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots$
\# even subsets $=$ \# odd subsets
Example: $n=3 \quad S=\{1,2,3\}$
$\notin\{1,2\}$
$\{1\}\{2\}$
$\{1,3\} \quad\{2,3\}$
$\{3\} \quad\{1,2,3\}$

Another proof by bijection

$$
f: E(s) \rightarrow \theta(s)
$$

$x_{i} y$ are subsets of s
$x \in E(s)$
$y \in \theta(S)$

Even subsets of s of s
$y=f(x)= \begin{cases}x-\{1\} & 1 \in x \\ x \cup\{1\} & 1 \notin x\end{cases}$
onto:

one-to-one:

$1 \in x_{1}$ and $1 \notin x_{2} \Rightarrow 1 \notin y_{1}$ and $1 \in y_{2} \Rightarrow y_{1} \neq y_{2}$
$1 \in x_{1}$ and $1 \in x_{2} \Rightarrow$ Removing the 1^{\prime} mates $y_{1} \neq y_{2}$
$1 \notin x_{1}$ and $\mid \notin x_{2} \Rightarrow$ adding 1's still mates $y_{1} \neq y_{2}$

