(C) Copyright 2024 Saad Mneimneh It's illegal to upload this document or a picture of it on any third party website
 CSCI 150 Discrete Mathematics Homework 5

Saad Mneimneh, Computer Science, Hunter College of CUNY
Due Wed. 3/13/2024 (before midnight)

1. Think of the most fascinating theorem that you have ever encountered. It could be a simple one, or it could be very sophisticated. Whatever the statement of that theorem is, let's call it P. Consider the following proposition:

$$
\text { pigs can fly } \Rightarrow P
$$

- Why is the above proposition true?
- How come this is not a proof of P itself?

2. For each of the following, find whether it is always true, always false, or neither:

$$
\begin{aligned}
& 0 \wedge P \\
& 1 \wedge P \\
& 0 \vee P \\
& 1 \vee P \\
& 0 \Rightarrow P \\
& 1 \Rightarrow P \\
& P \vee \neg P \\
& P \wedge \neg P \\
& P \Rightarrow \neg P
\end{aligned}
$$

3. Let P and Q be two propositions and consider the following proposition:

$$
(P \Rightarrow Q) \vee(Q \Rightarrow P)
$$

Show that the above proposition is always true:

- by means of a truth table:

P	$P \Rightarrow \Rightarrow$	$Q \Rightarrow P$	$(P \Rightarrow Q) \vee(Q \Rightarrow P)$
0	0		
0	1		
1	0		
1	1		

- by replacing any proposition of the form $X \Leftrightarrow Y$ by $\neg X \vee Y$ and using the associative property of \vee.

4. An integer n is a multiple of 3 if $n=3 k$, and is not a multiple of 3 if $n=3 k+1$ or $n=3 k+2$ (these are all possible cases), where $k \in \mathbb{Z}$. Consider the following statement:
$\forall n \in \mathbb{Z},\left(n^{2}\right.$ is not a multiple of $3 \Rightarrow n$ is not a multiple of 3$)$
(a) Prove the statement is true by working with its contrapositive.
(b) By finding n^{2} for each possible case listed above for n, conclude a stronger result:

$$
\forall n \in \mathbb{Z}, \quad\left(n \text { is a multiple of } 3 \Leftrightarrow n^{2} \text { is a multiple of } 3\right)
$$

5. Prove by a counter example that the following statement is false

$$
\forall n \in \mathbb{Z},\left(n^{2} \text { is a multiple of } 4 \Rightarrow n \text { is a multiple of } 4\right)
$$

6. Prove by contradiction that $\sqrt{3} \notin \mathbb{Q}$.
7. Consider $(P \wedge Q) \Rightarrow R$ and $P \Rightarrow(R \vee \neg Q)$. Show that they are equivalent:

- by means of a truth table
- by reasoning about when exactly each of them is false (without a truth table).

8. Assume that all of the following are true

$$
\begin{gathered}
(P \vee Q) \Rightarrow R \\
Q \vee R \\
R \Rightarrow P
\end{gathered}
$$

Show by contradiction that P is true.

