(C) Copyright 2024 Saad Mneimneh

 It's illegal to upload this document or a picture of it on any third party website
CSCI 150 Discrete Mathematics Homework 6

Saad Mneimneh, Computer Science, Hunter College of CUNY

Due Wed. 3/20/2024 (before midnight)

We argued in class that there are no proofs by example, an exception being that we may disprove a statement by providing a counter example. For instance, to prove that the polynomial $p(n)=n^{2}+n+41$ does not produce a prime number for every integer $n \geq 0$, we may show that $41^{2}+41+41$ is not prime.

1. Prove that the polynomial $n^{2}-79 n+1601$ does not produce a prime number for every integer $n \geq 0$.
2. Prove that the sequence given by

$$
a_{n}=1+\prod_{k=1}^{n} p_{k}
$$

where p_{k} is the $k^{\text {th }}$ prime, is not always prime. Here are the first few values (which are prime):

$$
3,7,31,211,2311, \ldots
$$

Another scenario where the use of an example is appropriate is existential proofs when we are interested in showing the truth of a statement of the form:

$$
\exists n, P(n)
$$

For example, prove that there exist a prime number that is even.

$$
\exists n, n \text { is prime and even }
$$

In this case, we can simply "construct" an example. For instance, 2 is prime and is even. Done!
Here's another example: Prove that there exists two perfect squares whose sum is a perfect square.

$$
\left.\exists x, y, z \in \mathbb{N}, x^{2}+y^{2}=z^{2}\right)
$$

Similarly, we can construct an example: $9+16=25$.
3. The Fibonacci numbers are given by the following sequence:

$$
0,1,1,2,3,5,8,13,21,34,55, \ldots
$$

Prove that there is a Fibonacci number that ends in the digit 7.
4. Prove that there exists two irrational numbers x and y such that $x y$ is rational.

Sometimes, it is not easy to construct an explicit example, but we can still prove existence. Such proofs are called "non-constructive". Here's an example: Prove that $x^{3}+x-1=0$ has a solution.

$$
\exists x \in \mathbb{R}, x^{3}+x-1=0
$$

The function $f(x)=x^{3}+x-1$ is a continuous function, and $f(0)=-1$ and $f(1)=1$. This means there must be an $x, 0<x<1$, such that $f(x)=0$. Observe that we could not construct the solution itself, but we were able to prove that it exists.
5. Prove that $x^{4}-x-1=0$ has more than one solution.
6. Prove that there exist two irrational numbers x and y such that x^{y} is rational. Hint: Think of the number

$$
\left(\sqrt{3}^{\sqrt{2}}\right)^{\sqrt{2}}
$$

and consider all possible cases for $\sqrt{3}{ }^{\sqrt{2}}$.
7. Prove by contradiction that the following tiles cannot be put together to make a perfect square. Hint: use a parity argument similar to the one we saw in class.

8. Prove the following using the contrapositive:

$$
\forall r \in \mathbb{R}-\{1\}, \frac{r}{r-1} \notin \mathbb{Q} \Rightarrow r \notin \mathbb{Q}
$$

Does the statement remain true if we simply reverse the implication?
9. Prove the following is true:

$$
\forall n \in \mathbb{N}, n \text { is even } \Rightarrow\binom{n}{3} \text { is even }
$$

Hint: If $2 x / 3$ is an integer, then $x / 3$ is an integer because 2 and 3 have no common factors.
10. Which of the following sets is countable and which is uncountable (try your best to explain your answer)?

- The set of all cups on Earth
- The set of all real numbers in $(0,1)$
- The set of all finite binary sequences

The set $\mathbb{R}-\mathbb{Z}$

