(C) Copyright 2024 Saad Mneimneh It's illegal to upload this document or a picture of it on any third party website

 CSCI 150 Discrete Mathematics

 CSCI 150 Discrete Mathematics Homework 7

 Homework 7}

Saad Mneimneh, Computer Science, Hunter College of CUNY

Due Wed. 3/27/2024 (before midnight)

Note: Some ideas in this homework are taken from the book Gentle Introduction to the Art of Mathematics.

1. (Optional, to understand that the interval $(-1,1)$ is "as big" as the entire set \mathbb{R}.)

- Find a function $f:(-1,1) \rightarrow \mathbb{R}$ that is both one-to-one and onto. This establishes the claim. Hint: design your function such that it's continuous and takes -1 to $-\infty$ and +1 to ∞.
- In this approach, we will map $(-1,1)$ to \mathbb{R} by a geometric construction.

For any $x \in(-1,1)$:
(a) obtain its vertical projection on the unit circle in the upper half plane, then
(b) make an appropriate projection of that point onto the tangent line (the line $y=1$), and finally
(c) project vertically onto \mathbb{R} (the line $y=0$).

Obviously, you only have to figure out (b). Show your work and explain. Extra: can you obtain the function corresponding to this geometric argument?

Extra Challenge: (You are not required to do this) Find a bijection from $[-1,1]$ to \mathbb{R}. This time -1 and 1 are elements of the domain.
2. We learned in class that for any set $A,|A|<|\mathcal{P}(A)|$. For instance, this means that $\mathcal{P}(\mathbb{N})$, the set of all subsets of \mathbb{N} is uncountable. Let $\mathcal{P}_{\mathcal{F}}(\mathbb{N})$ be the set of all finite subsets of \mathbb{N}. ${ }^{\circ}$

$$
\mathcal{P}_{\mathcal{F}}(\mathbb{N})=\{X \in \mathcal{P}(\mathbb{N}) \mid X \text { is finite }\}
$$

For instance, the subset $\{2,4,6\} \in \mathcal{P}_{\mathcal{F}}(\mathbb{N})$ but the subset $\{1,3,5, \ldots\} \notin$ $\mathcal{P}_{\mathcal{F}}(\mathbb{N})$. Show that $\mathcal{P}_{\mathcal{F}}(N)$ is countable.

Note: Here's an ordering that does not work: order the elements of $\mathcal{P}_{\mathcal{F}}(\mathbb{N})$ (finite subsets of \mathbb{N}) by their size (since each is finite, the size is well defined):

$$
\phi,\{1\},\{2\},\{3\},\{4\}, \ldots
$$

Do you see the problem?
Hint: Every finite subset has a largest element.
3. We will now show that $\mathcal{P}(\mathbb{N})$ is uncountable even though we already know this fact. This is an opportunity to practice the diagonal method. To do this, we will first represent each subset S of \mathbb{N} by an infinite binary word in which the $i^{\text {th }}$ bit is 1 if $i \in S$ and 0 otherwise. To practice this notion try to fill in the table:

infinite binary word	subset of \mathbb{N}
$00000 \ldots$	
$100000 \ldots$	
$011100000 \ldots$	
	$\{2,4,6\}$
$1010101010 \ldots$	
	$\{3 k-2 \mid k \in \mathbb{N}\}$
	\mathbb{N}

Now we need to show that there is no bijection from \mathbb{N} to the set of infinite binary words. Reproduce the diagonal argument to show this fact.
Note: Think about this, but you are not required to provide an answer: Why doesn't this diagonal argument disprove the fact that $\mathcal{P}_{\mathcal{F}}(\mathbb{N})$ of question 2 is countable?
4. Consider the following grid of 20 white dots

```
\circ ○ O O O
\circ ○ ○ ○ o
\circ ○ ○ ○ o
\circ
```

We color 9 dots black. Prove that three of the black dots make a line.
5. How many numbers in $\{1,2, \ldots, 546\}$ are not divisible by 2 and not divisible by 3 and not divisible by 7 ?
Hint: Negate the requirement, find the answer using inclusion-exclusion, then fix it to answer the original question.
Hint: Check your answer against $546 \times(1 / 2) \times(2 / 3) \times(6 / 7)$ (this does not always work by the way depending on the choice of numbers).
6. Prove by induction that for all integers $n \geq 0, \sum_{i=0}^{n}(4 i+1)=2 n^{2}+$ $3 n+1$.

Problem 1

A homogeneous subset of \mathbb{N} is one where all the elements have the same parity. A student in CSCI 150 decided to prove that the set all homogeneous subsets of \mathbb{N} is uncountable. The student proposed that every homogeneous subset of \mathbb{N} can be represented as an infinite binary word with all its 1 s either in even positions or in odd positions. For instance, $\{1,3,5,7,9 \ldots\}$ can be represented by the infinite binary word $1010101010 \ldots \ldots$, and $\{2,4,10\}$ by $0101000001000 \ldots$, and $\phi=\{ \}$ by $000 \ldots$, and so on.

With B being the set of all infinite binary words satisfying the above condition, the student mimicked Cantor's diagonalization proof in order to construct a infinite binary word w such that there is no $i \in \mathbb{N}$ with $f(i)=w$. He did this by flipping bits along the diagonal (as shown below).
(Hypothetical function $f: \mathbb{N} \rightarrow B$)

\mathbb{N}	B
1	$\underline{1} 010101010 \ldots$
2	$0 \underline{101000001000 \ldots}$

000...
$\vdots \vdots$
$w=001 .$.
(a) What's wrong with the student's proof?
(b) Fix the student's proof.

Problem 2

A 3 digit number is good iff it does not have 1 in the first digit, and does not have 2 in the second digit, and does not have 3 in the third digit. How many good 3 digit numbers are there?
(a) Solve this question using the product rule by identifying the possibilities for each of the three digits.
(b) Do the same using the inclusion-exclusion principle. Hint; consider the negation to get the "or" logic. In other words, find the number of bad 3 digit numbers, then adjust your answer to find the number of good 3 digit numbers.
(c) Assume now that all 3 digits must be different. How many 3 digit numbers are good? Hint: which technique is more suitable, that of part (a) or part (b)?

Problem 3

There is a $1 \times \ell$ rectangle. For simplicity, we will assume that ℓ is a positive integer.
(a) We place $\ell+1$ points in the rectangle. Prove that two of the points must be within a distance of $\sqrt{2}$.
(b) Show by an example that you can place $\ell+1$ points in the rectangle such that the distance between any two of them is at least $\sqrt{2}$.
(c) Show by an example that you can place ℓ points in the rectangle such that no two of them are within a distance of $\sqrt{2}$.

