© Copyright 2024 Saad Mneimneh It's illegal to upload this document or a picture of it on any third party website

CSCI 150 Discrete Mathematics Homework 9

Saad Mneimneh, Computer Science, Hunter College of CUNY

Due Thu. 4/18/2024 (before midnight)

1. An alien species communicates using a three-letter alphabet $\{x, y, z\}$. In their language, words must obey one rule: zz cannot be part of any word; otherwise, the speaker will go to sleep and never finish the sentence. Describe the number of words of length n by a recurrence. Let a_n be the number of words of length n, and express a_n in terms of a_{n-1} and a_{n-2} .

Hint: Do as we did with the tiling problem, i.e. consider different cases based on how you start a word, then for each case figure out in how many ways you can finish it.

- 2. Consider a version of the Tower of Hanoi where each disk is duplicated, so we have 2n disks with 2 disks of each size. The rules of the game are the same. Let a_n be the number of moves needed to solve this 2n-disk problem.
 - (a) Find a recurrence for a_n .
 - (b) Guess a solution for a_n is terms of n (by exploring), and prove it by induction.

- 3. Consider a sequence where $a_0=1,\ a_1=-2,\ {\rm and}\ a_n=-2a_{n-1}-a_{n-2}$ for $n\geq 2.$
 - (a) Guess a_n as a function of n and prove it by strong induction.
 - (b) Use the characteristic equation method.
- 4. Consider the following recurrence,

$$a_n = \frac{1}{2}a_{n-1} + 1$$

where $a_1 = 1$.

- (a) Guess a pattern for a_n and prove it by induction.
- (b) Convert the recurrence for a_n into the form $a_n = Aa_{n-1} + Ba_{n-2}$ by eliminating the constant 1 in the recurrence. Solve for a_n using the characteristic equation.
- (c) Find a_n using the generating function method (follow the example illustrated in class).
- 5. Consider 2n points on the circumference of a circle. In how many ways can we join the points pairwise by n chords such that no two chords intersect? Call this number a_n , find a recurrence for it, then solve it.

Problem 1 (optional)

Consider the following sequences starting at a_0, a_1, \ldots

$$5, -10, 20, -40, \dots$$

$$1, 7, 49, 343, \dots$$

- (a) For each of the sequences above, find a recurrence of the form $a_n = Aa_{n-1}$ for $n \ge 1$, and solve for a_n as a function of n.
- (b) For each of the sequences above, find a recurrence of the form $a_n = Aa_{n-1} + Ba_{n-2}$ for $n \ge 2$, by considering the recurrence from part (a) for a_n and a_{n-1} ; the solution is not unique, depending on how you combine recurrences, so find the solution that corresponds to adding up the recurrences.
- (c) There are infinitely many recurrences of the form $a_n = Aa_{n-1} + Ba_{n-2}$ that work since we can write $a_n = cp^n + 0 \cdot q^n$ for $q \neq p$. Find a recurrence of the form $a_n = Aa_{n-1} + Ba_{n-2}$ for $n \geq 2$ that works for both sequences at the same time.

Problem 2 (optional)

Consider the following recurrence:

$$a_n = a_{n-1} - a_{n-2}$$

where $a_0 = 0$ and $a_1 = 1$.

- (a) Using the recurrence and the initial conditions, generate the first 18 numbers of the sequence $\{a_n\}$. Try to guess a way to compute a_n immediately by simply knowing n.
- (b) Solve for a_n . Hint: observe that a_n has the form $a_n = Aa_{n-1} + Ba_{n-2}$.
- (c) Your expression for a_n in part (b) will contain the imaginary number i. Use the binomial theorem to obtain a nicer expression for a_n :

$$a_n = \frac{1}{2^{n-1}} \left[\binom{n}{1} 3^0 - \binom{n}{3} 3^1 + \binom{n}{5} 3^2 - \dots \right]$$