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1 Introduction

College mathematics will often focus on calculus, and while it is true that cal-
culus is the most important field that started modern mathematics, it is very
technical. For example, it takes a lot of work to introduce notions like continuity,
derivatives, and limits. It took centuries just to develop proper definitions.

One, however, can develop a feel of mathematics and apply mathematical
methods in useful ways to daily problems by looking at other fields of mathe-
matics such as discrete mathematics.

So what is discrete mathematics? Well, discrete mathematics deal with
things that are not continuous, like number theory which studies integers. Con-
sider for example the sum 1+2+3+ . . .+n. In a continuous setting, one would
explore the following expression

∫

n

0

xdx

which is slightly different that the sum above. A typical knowledge of calculus
will make anyone realize that the integral represents the area under the function
f(x) = x taken between x = 0 and x = n. But what does the sum represent?
As we will see later on, this is related to an important result known as the
handshake lemma and has many applications. Discrete mathematics is more
like dealing with puzzles. The following is a list of topics that are typically
covered in a discrete mathematics course:

• combinatorics/counting

• proofs (it is a mathematics course after all, and there is no mathematics
without proofs)

• algorithms/recursion/complexity

• number theory

• probability

• graph theory



So what is the pre-requisite for such a course. Almost nothing. But you will
need to think in abstract terms. Let’s start with an example to illustrate this
fact.

2 Euler’s formula: v − e + f = 2

What is this formula about? Imagine a map where boundaries are non-crossing
lines as shown below.

The quantities v, e, and f refer to vertices, edges, and faces respectively.
Vertices are the dots, edges are the boundaries, and faces are the regions on the
map. We have 13 vertices, 18 edges, and 7 faces (including the outer face). We
can easily verify that 13 − 18 + 7 = 2. In general, a graph consists of a set of
vertices and a set of edges connecting pairs of vertices. If edges do not cross the
graph is said to be planar and faces are well defined. In fact, vertices can be
placed arbitrarily and edges don’t have to be straight lines. Therefore, a graph
is planar if it can be drawn while avoiding crossings (even if it can be drawn
with crossings). Euler’s formula says that for any planar graph, v − e + f = 2.
What does it take to obtain such a result? Not much. Let’s start with the
smallest planar graph consisting of a single vertex. This planar graph has 1
vertex, 0 edges, and 1 face (the outer face). Therefore, it satisfies the formula.
There are two ways to grow the graph. (1) add a vertex and connect it with an
edge to an existing vertex, in this case we increase both v and e by 1, and thus
we keep the sum unchanged. (2) add an edge between two existing vertices, in
this case we increase both e and f by 1 (we create a face), and thus we keep the
sum unchanged. We just rediscovered Euler’s result! This type of argument is
know as proof by induction, a technique that we will study later.

3 Why counting?

In the example above, we counted the vertices, edges, and faces, and estab-
lished a result. Counting is a general technique that can help us establish facts.
Counting can also give us a sense of the complexity of objects we are dealing
with. Consider the following example, that I will call the lazy professor ex-
ample. A professor randomly permutes the tests among his students and asks



each student to grade the test he/she gets. The professor would like to compute
the probability that no student gets his/her own test (of course, a desirable
outcome). On way to calculate this probability is by enumerating all possi-
ble permutations, and counting those permutations in which no students gets
his/her own test. Here’s an example with three students A, B, and C. The
possible permutations are the following (showing the assignment for test A, test
B, and test C respectively):

(A,B,C)

(A,C,B)

(B,A,C)

(B,C,A)

(C,A,B)

(C,B,A)

Among these permutations (6), only (B,C,A) and (C,A,B) are good. There-
fore, the probability is 2/6 = 1/3. In general, however, the number of permuta-
tions is

n! = 1 · 2 · . . . · n =
n

∏

i=1

i

where n is the number of students. Knowing this fact implies that this enumer-
ation is highly inefficient. We will see how to compute this probability using a
counting technique known as inclusion-exclusion.

4 Basic examples of counting

Consider the game of snakes and ladders. You probably played this game before.
The nice thing about it is that no thinking is required! So it is a light activity
that can be done to entertain.



But how long does one game last? Consider a snakes and ladders game
with n squares. We wish to place 10 snakes and 10 ladders. How many possible
configurations are possible? Simulating those configurations will help determine
the best layout of snakes and ladders in terms of the average length of a game.
But counting those configurations is not a trivial task (well, it is not so hard
either). Let’s simplify a little bit. Assume we are going to place one snake only.
How many snakes are possible?

The head of the snake can be in any square (let’s ignore that the head cannot
be in the last square). The tail must always be in a lower number square. If the
head is in square n, the tail can be in squares n− 1, n− 2, . . . , 1. Therefore, we
have n − 1 snakes with head in square n. This can be generalized, i.e. we have
i − 1 snakes with head in square i. The total number of snakes is therefore:

(n − 1) + (n − 2) + . . . + 1

Why do we add all the above? The idea is that each group of snakes is
disjoint from all others. In other words, a snake cannot have its head in square
i and in square j for i 6= j (unless it is a double headed snake!).

The addition principle: Consider k sets S1,. . . , Sk that are pairwise

disjoint. We denote by |Si| the size of set Si. The total number of elements in
all sets is |S1| + |S2| + . . . + |Sk|.

There is another way to count the number of possible snakes. Often when
counting object, it is useful to obtain an algorithm that generates them. For
instance, to generate a snake, we first choose a square, then we choose another
square. The two squares together define the snake. This can be thought of
as an activity with two stages. In the first stage, we have n choices. In the
second stages, we have n− 1 choices, regardless of the choice made in the first
stage. In other words, for every choice that we make in the first stage, we have
n − 1 choices for the second stage (not the same choices). Therefore, we have
n(n− 1) possible outcomes. However, this is not the number of snakes because
we overcounted. How do we know that we overcounted? Simply ask the follow-
ing question: Given a snake, how many ways generate that same snake by our
algorithm? Observe that square i followed by square j define the same snake as
square j followed by square i (because the head of the snake has to be in the
higher square). Therefore, each snake is counted exactly twice. The number of
possible snakes is n(n − 1)/2.

The multiplication principle: If an activity consists of k stages, and stage
i can be carried out in αi ways, regardless of other stages, the activity can be
carried out in α1α2 . . . αk ways.

This is illustrated in following “decision tree” for three stages. Starting
from the root of the tree, the number of leaves that we can reach is α1α2α3 (in
computer science a tree is almost always upside down).



α1

α2

α3

α2

α3 α3 α3

Note that the α1α2 . . . αk ways are not necessarily “distinct”. It depends
on what we are counting. Sometimes we overcount, so we have to adjust by
dividing. The general strategy is, therefore, to come up with an algorithm of
making choices that generate the objects that we are counting. We have to
make sure:

• every generated outcome is valid

• all valid outcomes can be generated

• each valid outcome is generated exactly once; otherwise, adjust based on
the amount of overcounting

In our algorithm above, every outcome is a valid snake (based on our in-
terpretation of the squares), all snakes can be generated (their squares can be
generated), and each outcome is generated twice (so we must divide by 2).

We have just established the following:

1 + 2 + . . . + (n − 1) =
n(n − 1)

2

which is the same as saying (make sure you understand why):

1 + 2 + . . . + n =
n(n + 1)

2

This was proved by counting the same thing in two different ways. This is called
a proof by a combinatorial argument. If we define Tn, the nth triangular number

Tn = 1 + 2 + . . . + n =

n
∑

i=1

i

then the number of possible snakes is Tn−1.



5 Handshake lemma

The above count is also related to the handshake lemma. Consider n people
that shake hands with each other. How many handshakes do we count? Let’s
imagine an algorithm that generates a handshake. We first choose a person,
then we choose another person. Those two persons define a handshake. By
the multiplication principle, the total number of outcomes is n(n − 1). But
again, we overcounted! Each handshake is generated twice because the choices
(A,B) and (B,A) define the same handshake. So we have to divide by 2 to get
n(n − 1)/2. This can be viewed as a graph with n vertices (the people) and an
edge connecting every pair of vertices (the handshakes). But what happens if
we drop some edges, i.e. not all handshakes were made. Consider the following
example:

Define the degree of a vertex to be the number of edges touching it. In
the graph above, we see degrees of 1, 1, 4, 2, 2, 3, 2, 1 (try to map them to
the vertices, interesting exercise: come up with two graphs that have the exact
same set of degrees). What can we say about the sum of the degrees? By
summing up the degrees we basically count edges (“handshakes”). Each edges
is counted twice, once from each side. Therefore, the sum of the degrees is equal
to twice the number of edges. That’s the handshake lemma! This also implies
that the sum of degrees is always even. This in turn implies that there is a even
number of vertices with odd degrees (why?). The handshake lemma has many
applications, e.g. the mountain climbing problem (search for it online).

6 Generalization

What does n(n − 1)/2 really represent? It is not hard to see that this is the
number of ways of choosing two from n objects (where order is not important).
In other words, this is the number of pairs that we can form on n objects. The
snake was defined as a pair of squares, the handshake as a pair of people. This
quantity has a notation (and we call it n choose two).

(

n
2

)

=
n(n − 1)

2

Therefore, it is legitimate to ask what is

(

n
k

)

for k = 0, 1, 2, . . . , n? In other

words, in how many ways can we choose k from n objects?


