
Discrete Mathematics

Counting

Saad Mneimneh

1 n choose k

Consider the problem of seating n people on n chairs. In how many ways can
we do that? Let’s come up with an algorithm that generates a seating. Our
algorithm consists of n stages. In stage 1 we choose a person for chair 1, in stage
2 we choose a person for chair 2, etc... In stage n we put the last person in chair
n. State 1 can be carried out in n ways, stage 2 can be carried out in n−1 ways,
etc... In general, stage i (for i = 1 . . . n) can be carried out in n − i + 1 ways.
Therefore, the entire activity can be carried out in n(n − 1)(n − 2) . . . 1 ways.
This is equal to n! by definition. Now we need to verify the three conditions:

• every outcome is a valid seating: this is obvious.

• all seatings can be generated: given a seating, we can set the choices for
each stage appropriately to generated it.

• every seating is generated exactly once: given a seating, it must have been
generated by making a specific choice in stage 1, a specific choice in stage
2, etc...

Therefore, the n! represents the number of possible seatings. In general, n!
is the number of permutations (orderings) on n objects. This can be seen by
considering chairs to be the ranks. Putting person i on chair j is equivalent to
giving person i the jth rank.

Assume now that we only have k ≤ n chairs. How many seatings are possible
(some people may not be given a chair)? Observe that the same algorithm above
when stopped at stage k will work. By the multiplication rule, the number of
seatings is

n(n− 1) . . . (n− k + 1) =
n!

(n− k)!

What happens if n = k (one should be able to retrieve n!, read further)?
The above quantity is the number of ways of choosing k from n objects if their
order is important. To see this, observe that we are effectively choosing k from
n people and ranking them (by placing them on chairs).

We are about to make the final step for obtaining n choose k. If all we
care about is the set of k people that we choose to be seated, then the above

modified algorithm overcounts our possibilities by k!. Why? Observe now that
any permutation of a seating results in an equivalent one (because it preserves
the set of k people that are seated). But we just learned that the number of
permutations on k objects is k!. Therefore, the number of ways of choosing k
from n objects is: (

n
k

)
=

n!

k!(n− k)!

When k = 2, it is easy to verify that we retrieve our previous expression.(
n
2

)
=

n!

2!(n− 2)!
=
n(n− 1)(n− 2)(n− 3) . . .

2(n− 2)(n− 3) . . .
=
n(n− 1)

2

By definition, 0! = 1 (the empty product). So,(
n
0

)
=

n!

0!(n− 0)!
= 1

Does this make sense? This is essentially saying that there is only one empty

subset in a set of size n (clearly!). Similarly, there are

(
n
k

)
subsets of size k

in a set of size n.

2 Sets, relations, functions, and more

A set is an unordered collection of elements. It is usually represented by listing
the elements between braces separated by commas (each elements appears once).
For instance, the following

S = {a, b, c}

is a set called S that contains the elements a, b, and c. The size of a set is
denoted by | |. For example, |S| = 3. By a ∈ S we signify that element a is
in S. A set T is a subset of S if all elements of T are in S, we denote this by
T ⊂ S. By definition, the empty set is a subset of every set (including itself). A
proper subset of S is a subset of S that is not S itself. The intersection of two
sets S and T is denoted by S∩T and is the set of all elements that are in S and
in T . The union of two sets S and T is denoted by S ∪ T and is the set of all
elements that are in S or in T . Sometimes it is useful to describe a set without
explicit enumeration of its elements (because it is impossible for instance). Here
are few examples:

N = {1, 2, 3, . . .}

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Q = {x|x = a/b where a ∈ Z and b ∈ N}

S = {x|x = 2k − 1 where k ∈ N} = {1, 3, 5, . . .}

S ∩ T = {x|x ∈ S and x ∈ T}

S ∪ T = {x|x ∈ S or x ∈ T}

The product of two sets S and T is defined as following set of tuples (note
that it is not commutative):

S × T = {(x, y)|x ∈ S and y ∈ T}

A relation R on S×T is a subset of S×T . Consider S = {GO,TOO, Y OY O}
and T = {2, 3, 4}.

S × T = {(GO, 2), (GO, 3), (GO, 4), (TOO, 2), (TOO, 3), (TOO, 4),

(Y OY O, 2), (Y OY O, 3), (Y OY O, 4)}

The following relation maps a word in S to the number of O’s in it.

R = {(TOO, 2), (Y OY O, 2)}

When every element in S appears exactly in one tuple of R, R is also said to
be a function from S to T , denoted f : S → T and f(x) = y if and only if
(x, y) ∈ R. If every element in T appears in at least one tuple, the function is
called onto function. A function is a one-to-one correspondence (also called a
bijection) if every element in T appears exactly in one tuple, i.e. it is onto and
f(x) 6= f(y) if x 6= y. If such one-to-one correspondence exists, then |S| = |T |.
The following function maps every word in S to its length and is a one-to-one
correspondence.

R = {(GO, 2), (TOO, 3), (Y OY O, 4)}

f(GO) = 2, f(TOO) = 3, f(Y OY O) = 4

The elements of a set can be anything, including sets themselves. Here’s the
set of all subsets of S = {a, b, c, } (we call it the power set):

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

where ∅ is the empty set, which is a subset of every set. Verify that we have(
3
0

)
subsets of S of size 0,

(
3
1

)
subsets of S of size 1,

(
3
2

)
subsets of S

of size 2, and

(
3
3

)
subsets of S of size 3. If we add them up, we get 8, which

is the total number of subsets of S. This leads to a question: how many subsets
does a set of size n have?

Here’s an algorithm that generates a subset. It consists of n stages. In stage
i, the ith element (any order is OK) is either included in the subset or not. It is
easy to verify that this algorithm can generate any subset, including the empty
set. Moreover, every subset can be generated in only one way (because we go
through the elements in a predetermined order). Therefore, by the multiplica-
tion rule, and since each stage can be carried out in two ways, the total number
of subsets is 2n.

Here’s another way to compute the number of subsets using a one-to-one
correspondence. Consider the set of all binary strings of length n. The size
of this set is 2n (each bit can be either 0 or 1, apply the multiplication rule).
Without loss of generality, assume that S = {1, 2, . . . , n}. Given a subset of
S, we can construct a binary string such that the ith bit is 1 if and only if
the ith element is in the subset. This is obviously a one-to-one correspondence
because every subset defines a unique binary string of length n and every binary
string of length n defines a unique subset. Therefore, the number of subsets of
S = {1, 2, . . . , n} and the number of binary strings of length n are equal. So
|2S | = 2n. Here’s the one-to-one correspondence for S = {1, 2, 3}.

{(∅, 000), ({1}, 100), ({2}, 010), ({3}, 001),

({1, 2}, 110), ({1, 3}, 101), ({2, 3}, 011), ({1, 2, 3}, 111)}

We just proved by a combinatorial argument that:(
n
0

)
+

(
n
1

)
+ . . .+

(
n
n

)
=

n∑
k=0

(
n
k

)
= 2n

It is also not hard to prove algebraically that:(
n
k

)
=

(
n

n− k

)
(
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
, 0 < k < n

Can you come up with combinatorial arguments for the two identities above?
Given a set S, we often consider a relation on S × S. I am going to present

two types of such relations: an equivalence relation, and a partial order relation.
I will use the notation aRb to denote (a, b) ∈ R. I will also denote an equivalence
relation by ≡ and a partial order relation by ≺.

An equivalence relation satisfies the following three properties:

• reflexive: a ≡ a

• symmetric: a ≡ b⇔ b ≡ a

• transitive: a ≡ b and b ≡ c⇒ a ≡ c

For instance, equality is an equivalence relation. Equality of remainder in the
division by n is also an equivalence relation. For instance, 8 ≡7 15 means
(8, 15) ∈≡7, where ≡7 is the relation containing all pairs (a, b) such that a and
b have the same remainder in the division by 7. It is not hard to see that ≡n is
an equivalence relation (simply verify the three properties).

Every equivalence relation defines equivalence classes. An equivalence class
is a set of elements that are equivalent. For instance, since the remainder in the
division by 7 can take the values 0, 1, 2, 3, 4, 5, and 6, every integer must be
equivalent to one of these. This partitions the integers into 7 classes:

{. . . ,−14,−7, 0, 7, 14, . . .}
{. . . ,−13,−6, 1, 8, 15, . . .}
{. . . ,−12− 5, 2, 9, 16, . . .}
{. . . ,−11,−4, 3, 10, 17, . . .}
{. . . ,−10,−3, 4, 11, 18, . . .}
{. . . ,−9,−2, 5, 12, 19, . . .}
{. . . ,−8,−1, 6, 13, 20, . . .}

It is always true that the equivalence classes are disjoint and their union
is equal to the entire set (that’s why we say a partition of S into equivalence
classes). To prove this, let Ca be the equivalence class for a, i.e.

Ca = {b ∈ S|b ≡ a}
Since a ≡ a, every element a ∈ S must appear in some equivalence class Ca.
Therefore, ⋃

a∈S
Ca = S

Now take Ca and Cb. We will prove that if they are not disjoint, then they
must be equal. If Ca ∩ Cb 6= ∅, then let c ∈ Ca ∩ Cb. Therefore, c ≡ b and (by
symmetry) a ≡ c. By transitivity, a ≡ b:

e ∈ Ca ⇒ e ≡ a⇒ e ≡ b (by transitivity) ⇒ e ∈ Cb
We conclude that Ca ⊂ Cb. Similarly, Cb ⊂ Ca, so Ca = Cb.

A partial order relation satisfies the following:

• anti-symmetric (a 6= b): a ≺ b⇒ b 6≺ a, i.e. (a, b) ∈≺⇒ (b, a) 6∈≺

• transitive: a ≺ b and b ≺ v ⇒ a ≺ c.
It can be either reflexive or non-reflexive. An example of a partial order relation
is the < (or ≤) relation on R. Another example is set inclusion on the power
set of a given set S. One way to visually represent a partial order relation is by
using a Hasse diagram. Here’s an example for the set inclusion on the power
set of S = {a, b, c}.

{a,b,c}

{a,c}{a,b} {b,c}

{b}{a} {c}

{}

In a Hasse diagram, we draw a line going up from a to b if a ≺ b; however,
we do not show all the lines. We omit all the lines that can be inferred by
transitivity. This leads to the concept of the transitive closure of a relation R,
denoted by TC(R). TC(R) is the smallest transitive relation that includes R.
Therefore, a partial order relation is the transitive closure of its Hasse diagram
(the relation explicitly depicted by the Hasse diagram). In the above example,
the Hasse diagram explicitly depicts the relation

R = {(φ, {a}), (φ, {b}), (φ, {c}),

({a}, {a, b}), ({a}, {a, c}), ({b}, {a, b}), ({b}, {b, c}), ({c}, {a, c}), ({c}, {b, c}),

({a, b}, {a, b, c}), ({a, c}, {a, b, c}), ({b, c}, {a, b, c})}

and set inclusion ⊂ on 2S is nothing but TC(R).
A nice remark is that the Hasse diagram above looks like a three dimensional

cube. This is not a coincidence. If |S| = n, then the Hasse diagram for set
inclusion on the power set of S will look like a cube in n dimensional space.
Recall that there is a one-to-one correspondence between subsets of S and binary
strings of length n. Those in turn, when regarded as points in n dimensional
space, are the corners of a unit cube.

A typical application of partial orders is in scheduling. For instance, consider
the following tasks with their starting time and ending time. If two tasks overlap,
they cannot be scheduled on the same machine. The question is how many
machines are needed to perform all the tasks.

1

2

5

4

3

6

If we let a ≺ b means task a ends before task b starts, then we can easily
show that ≺ is a partial order relation (simply verify that it is anti-symmetric
and transitive). The Hasse diagram for the above set of tasks is the following:

1

3 42

5 6

To schedule the tasks, we need to partition the above diagram into disjoint
chains. For instance, {{1, 2, 6}, {5}, {3}, {4}}. Every chain represents a set of
tasks that may be scheduled on the same machine. The question then reduces to
finding the smallest number of disjoint chains that partition the Hasse diagram.
It turns out that this number is equal to the size of the largest antichain. An
antichain is a set A such that if a, b ∈ A, then a 6≺ b. In other words, it is a
set of elements that are pairwise unrelated by ≺. Given a partition into disjoint
chains, an antichain can include at most one element from each chain. For the
above example, we can form A = {1, 3, 4}. Therefore, the size of any partition
is always an upper bound on the size of any antichain. When the sizes meet, we
have an optimal scheduling. For instance, the partition {{1, 2, 5}, {3, 6}, {4}},
and the antichain {1, 3, 4} have the same size. So that’s the best we can do, we
need three machines.

When a partial order relation is defined on a finite set S, we can always
find a minimum. A minimum is an element x of S, such that no element of S
y 6= x satisfies y ≺ x. The proof is by contradiction. Assume that no minimum
exists, then starting from an arbitrary element, we can find a sequence such that
a1 ≺ a2 ≺ a3 ≺ . . . (avoid any step obtained by the reflexive property). Since
the set S is finite, we must cycle, i.e. we find a sequence ai ≺ ai+1 ≺ ai+2 ≺
. . . ≺ ai+n ≺ ai. By transitivity (repeated), ai ≺ ai+n. This means that the
relation is symmetric, a contradiction. The same reasoning can be applied for
the concept of a maximum. We typically say minimal and maximal since these
elements are not necessarily unique.

3 Anagrams

How many anagrams (not necessarily meaningful) can we build from a given
word? A quick answer would be as many ways the letters of the word can be
permuted. For example, the word MATH has four letters and every permutation
of those letters will make an anagram. Therefore, we have 4! = 24 anagrams that
we can build from the word MATH. But what if the word was MATHEMATICA,
can we apply the same reasoning? We now have 11 letters and hence we have
11! anagrams. As it turns out, this is wrong. The letters now are not unique.

The number of anagrams of an n-letter word depends on how many times
letters of the word are repeated. For instance, permuting the Ms or the As
or the T s in the word MATHEMATICA will result in the same anagram. M
is repeated twice, A is repetead three times, and T is repeated twice. The
number of permutations that preserve the anagram is 2!3!2! = 24. Therefore,
the 11! permutations overcount the number of anagrams by 24. The number of
anagrams that we can build from the word MATHEMATICA is

11!

2!3!2!

In general, given a n-letter word with k unique letters where letter i appears

ni times, the number of anagrams that we can build from this word will be

n!∏k
i=1 ni!

=
n!

n1!n2! . . . nk!

4 Forming teams

Given 2n players, we would like to pair them up to form n teams of two. How
many configurations of teams are possible? I will present three ways for count-
ing those configurations.

Method 1: Imagine a large table with n chairs on each side (a total of 2n
chairs). Seating the players on the chairs obviously defines the teams (players
who face each other on the table are in the same team). It should be clear by
now that this seating can be done in (2n)! ways (a permutation). But does that
really represent the number of possible configurations of teams? Consider the
following example where the teams are (A,B), (C,D), (E,F):

A C E

B D F

Permuting players within teams produces equivalent configurations. That’s
a 2×2×2 multiplicity. Similarly, permuting teams on the table produces equiv-
alent configurations. That’s a 3! multiplicity. Therefore, each configuration in
the above example is counted exactly 233! times. In general, the (2n)! represent
an overcounting by 2nn!. The number of possible configurations of teams is
therefore:

(2n)!

2nn!

Method 2: An algorithm to generate teams could proceed as follows. We
first choose two players from 2n to form the first team. Then we choose another
two players from 2n−2 to form the second team, etc... This consists of n stages
where in stage i (i = 1, . . . , n) we choose 2 players from 2n−2(i−1). Obviously,

stage i can be carried out in

(
2n− 2i+ 2

2

)
ways. By the multiplication rule,

the entire activity can be carried out in(
2n
2

)(
2n− 2

2

)(
2n− 4

2

)
. . .

(
2
2

)
ways. However, there is overcounting. By permuting the n choices we still
obtain an equivalent configuration. Therefore, we are overcounting by n!. The

number of configurations of teams is therefore:(
2n
2

)(
2n− 2

2

)(
2n− 4

2

)
. . .

(
2
2

)
n!

It is not hard to verify algebraically that the two expressions obtained in Method
1 and Method 2 are equal.

Method 3: Here’s another algorithm to generate teams. Fix an order on the
players; for instance, based on their height. The algorithm proceeds as follows.
Repeatedly pick the shortest player among the remaining ones and choose a
partner. This is done in n stages. The first stage can be carried out in 2n − 1
ways. The second stage can be carried out in 2n− 3 ways, etc... In general, the
ith stage can be carried out in 2n− 2i+ 1 ways. By the multiplication rule, the
entire activity can be carried out in

(2n− 1)× (2n− 3)× . . .× 5× 3× 1

ways. That’s the product of the first n odd numbers. Does this expression
overcounts? The answer is no. To see this, consider a possible outcome, say
(A,B), (C,D), (E,F) when n = 3. Our algorithm can definitely generate this
configuration. More importantly, it can generate this configuration only once!
Why? Assume without loss of generality that A < B < C < D < E < F . The
only way to generate this configuration is by choosing B as a partner for A,
then D as a partner for C, then F as a partner for E. We have established the
following identity:

1× 2× 3× . . .× (2n− 1) =
(2n)!

2nn!

The result can be generalized to mn people and teams of size m as follows

(mn)!

(m!)n!

This can be further generalized to non-homogenous teams using the same count-
ing approach. Given n people, we can form αi teams of size i, 1 ≤ i ≤ n, where∑n
i=1 iαi = n in the following number of ways:

n!∏n
i=1 i!

αiαi!

As an example, consider 25 people to be placed into 4 groups of size 3, two of
size 4, and one of size 5. This is how many ways it can be done:

25!

3!44!25!14!2!1!

5 The binomial theorem (Pascal triangle)

You might have seen the Pascal triangle before (each entry is the sum of the
two entries above it):

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

...

You might have used it to expand expressions of the form (x + y)n where n is
a non-negative integer. For instance, here are a few attempts:

(x+ y)0 = 1

(x+ y)1 = x+ y

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Observe that the coefficients in the expansion are exactly those that appear
in the corresponding row of the Pascal triangle. These are called the binomial
coefficients. It is not hard to see that the kth term in the nth row is nothing but(
n
k

)
(indexing starts at 0). The symmetry is obvious, another illustration

that

(
n
k

)
=

(
n

n− k

)
. Also, we see that

(
n
k

)
is largest when k = bn/2c.

So how big is

(
n
n/2

)
? Let’s find out. We can use Stirling’s approximation of

n! (when n is large):

n! ∼
√

2πn
(n
e

)n
(

n
n/2

)
=

n!

(n/2)!(n/2)!
∼

√
2πn(ne)n√

2πn/2(n/2e)n/2
√

2πn/2(n/2e)n/2
=

√
2πn(ne)n

πn(n2e)n
=

√
2

πn
2n

Back to (x+ y)n. The binomial theorem claims that:

(x+ y)n =

n∑
k=0

(
n
k

)
xn−kyk

The proof is easy. Here’s the argument when n = 5, but it works in general.
Think of expanding

(x+ y)5 = (x+ y)(x+ y)(x+ y)(x+ y)(x+ y)

We get each term in the expansion by choosing one of the two terms in each
factor, and multiplying them. If we choose x 2 times, then we must choose y 3
times, and so we get x2y3. How many times do we get this same term? Clearly,
as many times as the number of ways to choose the three factors that supply y
(the remaining factors supply x). Thus we have to choose three factor from five,

which can be done in

(
5
3

)
ways. Therefore, the expansion looks like this:

(x+y)5 =

(
5
0

)
x5+

(
5
1

)
x4y+

(
5
2

)
x3y2+

(
5
3

)
x2y3+

(
5
4

)
xy4+

(
5
5

)
y5

We can apply this argument in general to obtain the binomial theorem. Here
are a few quick applications of the binomial theorem.

(1 + 1)n =

(
n
0

)
+

(
n
1

)
+ . . .+

(
n
n

)
= 2n

(1− 1)n =

(
n
0

)
−
(
n
1

)
+ . . .+ (−1)n

(
n
n

)
= 0n

which is 0 when n > 0 and 1 when n = 0. This translates to the following:
If the terms of a row in the Pascal triangle alternate signs, they add up to 0,
except for the first row (when n = 0) which adds up to 1. Looking at the Pascal
triangle, this result is obvious due to symmetry when n is odd, but not when n
is even.

6 Selection with repetition

When it comes to choosing k from n, the selection can be either ordered or non-
ordered. But what if we allow repetitions? So far we have developed results
when repetition is not allowed. This is illustrated in the table below.

ordered unordered

no repetition n!
(n−k)!

(
n
k

)
repetition ? ?

In this section, we will complete the table. But why is it useful to do so?
Often we can model our problem as a selection process. The modeling is the
hard part. Once it is done, we can immediately figure out the answer from
the table above. Here’s a guide on how to model the problem. We are usually
dealing with two sets A and B. First, determine the set that you are choosing
from. The size of this set will be n, say |A| = n, and you will be choosing
|B| = k from n. Second, determine the property of the selection in the following
way: (a) repetition/no repetition: can you choose an element in A more than
once? (b) ordered/unordered: this often boils down to whether elements in B
are distinguishable (ordered) or not (unordered). Third, choose your answer
from the table.

We will first complete the table and then follow it by an example to illustrate
the above process. Let’s start with the easy one first when the selection is
ordered and repetition is allowed. Let’s consider an example of choosing two
elements from of the set S = {a, b, c}. The possibilities are:

aa ab ac

ba bb bc

ca cb cc

In general, let’s figure out an algorithm that generates all the possible out-
comes. This consists of k stages, where in each stage i we simply make the ith

choice to be any of the n elements (because repetition is allowed). Each stage
can be carried out in n ways. Therefore, the entire activity can be carried out
in nk ways. And this is what goes into the table. Another way of deriving the
result is by forming a word length k where our alphabet size is n. Every letter
in the word has n possibilities resulting in nk possible words. Observe now that
n and k are not related, i.e. we do not require that k ≤ n.

ordered unordered

no repetition n!
(n−k)!

(
n
k

)
repetition nk ?

What happens when we ignore the order. For instance, in the above example
ab and ba are considered the same. Here’s the list of all possible outcomes when
the selection is unordered:

aa ab ac

bb bc

cc

The number drops from 9 (nk = 32) to 6. How do we compute this number
in general? Arguments based on overcounting cannot be easily adapted here
because each outcome is overcounted a different number of times. Since order

is not relevant, one might think about an algorithm for generating a valid out-
come by choosing the a’s first, then the b’s, then the c’s, etc... This can be
represented by the following tree where each outcome appears exactly once (no
overcounting).

a

a b

b c

c b c c k=2

k=1

k=3

However, it is not obvious how to count the number of leaves in this tree.
The branching in the tree depends on the choices made so far. In other words,
when viewing this algorithm as an activity that consists of a number of phases
(e.g. two when k = 2), the number of ways a phase can be carried out depends
on the choices made for the previous phases. Therefore, we cannot easily apply
the multiplication rule here. In fact, if A(n, k) is the number we are looking for,
analyzing the structure of the tree will give:

A(n, k) =

n∑
i=1

A(i, k − 1)

where A(n, 0) = 1 and A(0, k) = 0 for k > 0. While this provides a way
to compute A(n, k), it does not help in terms of getting a nice expression for
A(n, k).

Observe that what is important is the number of times each element is se-
lected.

a b c
aa 2 0 0
ab, ba 1 1 0
ac, ca 1 0 1
bb 0 2 0

bc, cb 0 1 1
cc 0 0 2

The sum of each row in the table above is 2 (k in general). The table depicts
a function from the words of size two to an ordered partition of the integer 2
(k in general).

{(aa, (2, 0, 0)), (ab, (1, 1, 0)), (ba, (1, 1, 0)), (ac, (1, 0, 1)), (ca, (1, 0, 1)),

(bb, (0, 2, 0)), (bc, (0, 1, 1)), (cb, (0, 1, 1), (cc, (0, 0, 2))}

But if we consider ab and ba to be the same, and similary for ac and ca, and bc
and cb, then we are ready to make a one-to-one correspondence. Each selection
corresponds to n non-negative integers x1, . . . xn that add up to k. Similarly,
every x1, . . . , xn non-negative integers that add up to k uniquely define a selec-
tion. Therefore, it is enough to count the number of solutions for the following
equation:

x1 + x2 + . . .+ xn = k

0 ≤ xi ≤ k

In other words, in how many ways can we partition k into n parts (parts are
distinguishable and may be empty)? Consider the example of k = 8 and n = 6.
The following depicts a possible partitioning (x1 = 2, x2 = 1, x3 = 0, x4 =
3, x5 = 1, x6 = 1).

In general, any partitioning can be encoded as a string of k 0’s and n − 1
1’s. How many such strings can we have? We simply have to choose k 0’s from

n+k−1 bits. This is

(
n+ k − 1

k

)
. We now complete our table (again observe

that we do not require that k ≤ n when we have repetition):

ordered unordered

no repetition n!
(n−k)!

(
n
k

)
repetition nk

(
n+ k − 1

k

)
Because A(n + 1, k + 1) =

∑n
i=0A(i + 1, k), we have also established the

following: (
k + n+ 1
k + 1

)
=

n∑
i=0

(
k + i
k

)

Let’s apply the knowledge that we have acquired so far. Assume that we
have n kids and k gifts, and we wish to distribute the gifts among the kids. All
gifts must go. Furthermore, consider the following scenarios:

Scenario A.1: gifts are identical and every kid must receive at most one
gift. We have two sets, the set of kids and the set of gifts. Since all gifts must
go, let us model our problem as a selection from the set of kids. We must choose

k from n kids. With each selection, a gift is given. Can we choose a kid more
than once? No because every kid must receive at most one gift. Is the order of

the selection important? No because gifts are identical. The answer is

(
n
k

)
.

Note that k ≤ n is implicit in this scenario.

Scenario A.2: gifts are identical and kids may receive multiple gifts. Again
we must choose k from n kids. Can we choose a kid more than once? Yes be-
cause kids may receive multiple gifts. Is the order of the selection important?

No because gifts are identical. The answer is

(
n+ k − 1

k

)
.

Scenario A.3: gifts are identical and kids may receive multiple gifts. But
every kid must receive at least one gift. We first give each kid a gift and then
handle the k− n remaining gifts in the same way we did in A.2. The answer is(
n+ (k − n)− 1

k − n

)
=

(
k − 1
k − n

)
.

Scenario B.1: gifts are distinguishable and every kid must receive at most
one gift. Again we must choose k from n kids. Can we choose a kid more
than once? No because every kid must receive at most one gift. Is the order of
the selection important? Yes because gifts are distinguishable. The answer is
n!/(n− k)!. Note that k ≤ n is implicit in this scenario.

Scenario B.2: gifts are distinguishable and kids may receive multiple gifts.
Again we must choose k from n kids. Can we choose a kid more than once? Yes
because kids may receive multiple gifts. Is the order of the selection important?
Yes because gifts are distinguishable. The answer is nk.

