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1 The inclusion-exclusion principle

I have 50 pairs of socks of which 30 are black and 35 are cotton. How many
pairs of socks are black and cotton? If I call the set of black socks A and the
set of cotton socks B, we are looking at |A ∩B|. It is not hard to see that:

|A ∪B| = |A|+ |B| − |A ∩B|

because every element that belongs to both A andB is counted twice by |A|+|B|,
so we subtract the size of the intersection once. Therefore, there are 30+35-
50=15 socks that are black and cotton. Note that this assumes that I don’t have
any red socks for instance. Otherwise, the best claim we can make is that we
have at least 15 socks and that black and cotton (because |A∪B| would be less
or equal to 50 and not exactly 50). The formula above represents the simplest
form of the inclusion-exclusion principle. We first include the contribution of
each set, then we exclude the contribution of their intersection.

Here’s another example: at a party of 12 people, each person knows at least
m others. How large must m be to guarantee that we can find three people that
know each other? Observe that when m = 6 there is no such guarantee because
it is possible to have two groups of size 6 where knowledge is across groups only.
What if m > 6? Here’s a proof that this is sufficient. Pick any person p1 and
let S1 be the set of people known to p1. Now |S1| > 6, so pick a person in S1,
say p2, and let S2 be the set of people known to p2. Note that |S2| > 6 also. If
we can prove that S1 ∩ S2 is not empty, then we find a person known to p1 and
p2 and we are done. Now |S1| > 6, |S2| > 6, and |S1 ∪ S2| ≤ 12. Therefore,

|S1 ∩ S2| = |S1|+ |S2| − |S1 ∪ S2| > 6 + 6− 12 = 0

2 What about more than two sets?

The inclusion-exclusion principle can be generalized to more than two sets. Let’s
consider the example of three sets A, B, and C. What is |A ∪ B ∪ C|? If we
sum |A| + |B| + |C|, every element that belongs to two sets has been counted
twice. So, we can subtract once those elements by computing |A|+ |B|+ |C| −
|A ∩ B| − |A ∩ C| − |B ∩ C|. But what if an element belongs to all three sets?



It has been included three times, then excluded three times. We must include
it once again. This can be done by adding |A ∩B ∩ C|. Therefore,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

Using a similar argument, one could show that

|A ∪B ∪ C ∪D| = |A|+ |B|+ |C|+ |D|

−|A ∩B| − |A ∩ C| − |A ∩D| − |B ∩ C| − |B ∩D| − |C ∩D|

+|A ∩B ∩ C|+ |A ∩B ∩D|+ |A ∩ C ∩D|+ |B ∩ C ∩D|

−|A ∩B ∩ C ∩D|

and in general,
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The above is 1 when t > 0 and 0 when t = 0 (the element does not exist).

3 The lazy professor revisited

Assume we want to count the number of ways we can permute tests among
students without any student receiving his/her own test. If we number the
students and their respective tests from 1 to n, then let us call a permutation
bad if it assigns test i to student i for some i. We will count the number of
bad permutations and then subtract that number from n! (the total number of
permutations).



Let Si be the set of permutations that assign test i to student i. We want
|S1 ∪S2 ∪ . . .∪Sn|. Observe that |Si| = (n− 1)!. Similarly, |Si ∩Sj | = (n− 2)!,
|Si ∩ Sj ∩ Sk| = (n− 3)!, etc... So:
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Expanding, we get:
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n!

1!
− n!

2!
+ . . .+(−1)n−1n!

n!
= n!

[ 1

1!
− 1

2!
+ . . .+(−1)n−1 1

n!

]
Therefore, the number of good permutations is
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]
When n is large enough, this is approximately n!/e, where e = 2.71828. There-
fore, if a random permutation is performed, the probability that no student will
receive his/her own test is 1/e ≈ 37%.

4 Divisibility

Consider the problem of finding all integers ≤ 1000 that are divisible by 2 or 3
or 5. Let S2 be the set of integers ≤ 1000 that are divisible by 2. Define S3 and
S5 similarly. Then what we seek is |S2 ∪ S3 ∩ S5|. Now |S2| = b1000/2c = 500,
|S3| = b1000/3c = 333, and |S5| = b1000/5c = 200. Since 2 and 3 are both
primes, numbers that are divisible by 2 and 3 are exactly the numbers divisible
by 6 (we will learn this from number theory). Therefore, |S2∩S3| = b1000/6c =
166. Similarly, |S2 ∩ S5| = b1000/10c = 100, |S3 ∩ S5| = b1000/15c = 66, and
|S2 ∩ S3 ∩ S5| = b1000/30c = 33.

|S2 ∪ S3 ∪ S5| = 500 + 333 + 200− 166− 100− 66 + 33 = 734

5 Euler’s totient function

Euler asked the following question (it looks like he has been really busy): How
many integers ≤ n are relatively prime with n? Let us consider the example of
n = 60. If an integer is relatively prime with 60, then it cannot share any prime
factor with 60. So let us count the opposite. In other words, how many integers
≤ 60 share a prime factor with 60? We can write 60 as a product of primes
23 · 3 · 5. Any integer ≤ 60 that has 2, 3, or 5 as a prime factor is a candidate.
How many integers are there? Let S2 be the set of integers ≤ 60 that has 2 as
a prime factor. Define S3 and S5 similarly. We want |S2 ∪ S3 ∪ S5|.

|S2∪S3∪S5| = |S2|+ |S3|+ |S5|− |S2∩S3|− |S2∩S5|− |S3∩S5|+ |S2∩S3∩S5|



Obviously, |S2| = 60/2, |S3| = 60/3, S5 = 60/5. Similarly, |S2∩S3| = 60/(2 ·3);
this is true because both 2 and 3 are primes. If we continue this way, we find
that:
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= 44

Therefore, the number of integers ≤ 60 that are relatively prime with 60 is
60− 44 = 16. In general, if n has the prime factors p1, p2, . . . , pr, then
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It is not hard to verify that the above is equal to:

φ(n) = n
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)
. . .
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)
because every combination of the prime factors in the denominator (including
the empty one) appears with the appropriate sign.

6 Counting passwords

A good password must include at least one digit, at least one lower case letter,
and at least one upper case letter. How many good passwords of length n ≥ 3
are there? A password is bad if it fails any of the three criteria above. But it is
easy to count passwords that fail a given criteria. For instance, the number of
password that do not contain a any digit is 52n because each character of the
password can be any of {a, . . . z, A, . . . , Z}. By inclusion-exclusion it should be
feasible to count all bad passwords. Then we subtract that number from 62n,
which is the total number of passwords (where any every character can be any
of {0, . . . , 9, a, . . . z, A, . . . , Z}. Let us define S0 to be the set of all passwords
with no digits, Sa with no lower case letters, and SA with no upper case letters.
Then |S0| = 52n, |Sa| = 36n, |SA| = 36n, |S0 ∩ Sa| = 26n, |S0 ∩ SA| = 26n,
|Sa ∩ SA| = 10n, and |S0 ∩ Sa ∩ SA| = 0. Therefore, the number of good
passwords is

62n − (52n + 36n + 36n − 26n − 26n − 10n + 0)

Observe that when we replace n by 3 in the above expression, we get 40560 =
10 × 26 × 26 × 3! (why?). Could we have done the following: choose three
characters from n with order, make them a digit, a lower case letter, and an
upper case letter respectively, then choose the rest of the characters in 62n−3

ways? This would give

n!

(n− 3)!
× 10× 26× 26× 62n−3

which works when n = 3.



7 How many solutions?

How many solutions are there to the following system?

x1 + . . .+ xn = k

∀i, a < xi < b

where k, a, and b are all integers.
We know how to handle the lower bound. Since each xi ≥ a + 1, we can

rewrite the equation as:

x1 + . . .+ xn = k − n(a+ 1)

∀i, 0 ≤ xi < b− a− 1

The number of solutions ignoring the upper bound is

(
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)
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this number, we need to subtract the solutions in which some xi ≥ b − a − 1.
Using the inclusion-exclusion principle, this is:(
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where we define

(
x

n− 1

)
= 0 if x < n− 1.

8 The pigeonhole principle revisited

The generalized pigeonhole principle states that if m objects are to be placed
in n boxes, at least one box will contain at least⌊m− 1

n

⌋
+ 1

objects, where bxc is the largest integer less than or equal to x (similarly, dxe
is the smallest integer greater than or equal to x, question: is bxc+ 1 = dxe?).
When m = n+ 1, the above evaluates to 2 giving the standard pigeonhole prin-
ciple. The proof of the pigeonhole principle is again by contradiction. Assume
every box has at most bm−1

n c objects. Then the total number of objects is at
most bm−1

n cn ≤
m−1
n n = m− 1, a contradiction.

Although the pigeonhole principle is stated as such, when m and n are
both positive integers, bm−1

n c + 1 = dmn e. Therefore, one interpretation of the
pigeonhole principle is the following. To minimize the occupancy of every box,
the best strategy is to evenly distribute m among the n boxes. If m is fluid, then
each box will contain exactly an amount of fluid equal to m/n. The pigeonhole



principle cannot claim an occupancy that exceeds that. But since m does not
represent a fluid amount, the formula is adjusted to dmn e. In fact, the same
proof by contradiction can be constructed for dmn e.

An example of applying the pigeonhole principle is the following: we shoot
10 bullets on a 3× 3 square target. Prove that two bullets are within a distance
of 1.5 from each other. We can divide the square into 9 unit squares (the boxes).
Since we have 10 bullets, two of them must land in the same box. The distance
between two points in the unit square is at most that of a diagonal, which is√

2 < 1.5.
Another example is the following: at least 4 of any set of 44 people are born

in the same month! This is equivalent to “placing” 44 people in 12 boxes (each
month is a box). One box will contain at least b 44−1

12 c+ 1 = 4 people.
While making the pigeonhole argument is typically trivial, modeling the

problem is such as way that the pigeonhole principle becomes applicable is the
hard part. Sometimes it is really not obvious! Let’s take a simplified version of
the Dirichlet approximation theorem. For any real number α and any integer
n, there exist integers p and 1 ≤ q ≤ n such that

|qα− p| ≤ 1

n

Here’s a proof using the pigeonhole principle: consider the following n+ 1 num-
bers:

β1 = α− bαc

β2 = 2α− b2αc
...

βn+1 = (n+ 1)α− b(n+ 1)αc

By definition of b c, we have 0 ≤ βi < 1 for i = 1, . . . n+ 1. Divide the interval
[0, 1] into n “boxes” of equal size. Two of the above n + 1 numbers must end
up in the same box. Therefore, for some i > j

|βi − βj | = |(i− j)α− (biαc − bjαc| ≤ 1

n

Finally, set q = i− j and p = biαc − bjαc. Note that 1 ≤ q ≤ n and p ≥ 0.
The following are two problems by Erdös: Given the set S = {1, 2, . . . , 2n},

pick n+ 1 numbers in S. Then,

• two must be consecutive

• two must be such that one divides the other

Both can be proved using the pigeonhole principle. To prove the first, con-
struct the following n “boxes”: {1, 2}, {3, 4}, . . . , {2n − 1, 2n}. Now imagine
that to pick a number you must place a ball in the appropriate box. Two of



the n+ 1 balls must fall in the same box and, therefore, two numbers must be
consecutive. To prove the second, construct the following n “boxes”:

{1, 2, 4, . . .}
{3, 6, 12, . . .}
{5, 10, 20, . . .}

...

{2n− 1}
In other words, for every odd number i ∈ S, construct a subset of S

Si = {x|x ∈ S and x = i · 2k, k = 0, 1, 2, . . .}
Every number in S must belong to one of these subsets because every number
can be written as an odd number multiplied by a power of 2 (if we keep dividing
it by 2 we eventually reach an odd number). Here’s an example when n = 5,
i.e. S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

S1 = {1, 2, 4, 8}
S3 = {3, 6}
S5 = {5, 10}
S7 = {7}
S9 = {9}

Again, two of the n + 1 numbers must fall in the same box and hence one of
them can be written as i · 2k and the other as i · 2k′ . Therefore, one must divide
the other.

Here’s a final example (also by Erdös) before we move to another section on
the application of the pigeonhole principle: Consider a sequence of any n2 + 1
different numbers a1, a2, . . . an2+1. There is a monotonous subsequence of n+ 1
numbers, where monotonous means either increasing or decreasing. Here’s an
example when n = 2:

10 4 13 8 21

There is obviously an increasing sequence of length n + 1 = 3. How to prove
this for any n? Let ti be the length of the largest increasing sequence starting
at ai. The ti’s are shown for the above sequence:

10 4 13 8 21

3 3 2 2 1

If there is an increasing sequence of length n+1, we are done. Otherwise, ti ≤ n
for all i. Therefore, by the pigeonhole principle there must be⌊ (n2 + 1)− 1

n

⌋
+ 1 = n+ 1

ti’s that have the same value. We claim that the corresponding ai’s form a
decreasing sequence. Take any two of these, say ai and aj with i < j. If
ai < aj , then ti ≥ tj + 1, a contradiction since ti = tj . Therefore, ai > aj .



9 The birthday paradox

The pigeonhole principle tells us that in a group of 367 people there must be at
least two with the same birthday (there are only 366 possible birthdays). But
much less is required to guarantee this with a high probability. Let’s generalize
the setting. Given that we choose k elements from a set of size n (ordered
selection), what is the probability that all elements are distinct? Well, there are
n!/(n − k)! ways of ending up with distinct elements among the total number
of possibilities nk (ordered selection with repetition).

p =
n!

(n− k)!nk
=
n(n− 1) . . . (n− k + 1)

nk

ln p = ln
n− 1

n
+ ln

n− 2

n
+ . . .+

n− k + 1

n

It is known that lnx ≤ x− 1 and, therefore,

ln
n− i
n
≤ n− i

n
− 1 =

n− i− n
n

= − i
n

ln p ≤ − 1

n
− 2

n
− . . .− k − 1

n
= −k(k − 1)

2n

p ≤ e−
k(k−1)

2n

Applying this to our birthday problem, in a group of 50 people, the proba-
bility that no two will have the same birthday is at most

e−
50(50−1)
2×366 < 0.036

This means more than 96% chance of finding two people with the same birthday.

10 Simplified Ramsey theory (also pigeonhole)

I will start this section by a famous example. In a group of six people there
are three mutual friends or three mutual strangers. The proof of this is by
pigeonhole and goes as follows: consider person 1. The other five fall into one
of two “boxes” (sets):

F = {friends of person 1}

S = {strangers to person 1}

By pigeonhole, one of the above sets must have at least⌊5− 1

2

⌋
+ 1 = 3

people. If |F | ≥ 3, then either we have three mutual strangers in F , or there is
a pair of friends. Grouping the pair of friends in F with person 1 gives three



mutual friends. Similarly, if |S| ≥ 3, then either we have three mutual friends
in S, or there is a pair of strangers. Grouping the pair of strangers in S with
person 1 gives three mutual strangers.

Let N(a, b) be the number of people required to find a mutual friends or b
mutual strangers. We can show that N(a, b) ≤ N(a− 1, b) +N(a, b− 1). Before
we do this, let’s consider a variant of the pigeonhole principle: If m1+m2+ . . .+
mn−n+ 1 objects are placed in n boxes, then the first box will contain at least
m1 objects, or the second box will contain at least m2 objects, ..., or the nth

box will contain at least mn objects. This can be easily shown by contradiction:
If box i contains at most mi − 1 objects, then the total number of objects is at
most m1 +m2 + . . .+mn − n, a contradiction.

Now back to N(a, b). Given a set of N(a−1, b)+N(a, b−1) people, consider
person 1. Divide the other N(a−1, b)+N(a, b−1)−1 = N(a−1, b)+N(a, b−1)−
2+1 people into F and S as before. Either |F | ≥ N(a−1, b) or |S| ≥ N(a, b−1).

If |F | ≥ N(a− 1, b) then we find a− 1 mutual friends or b mutual strangers.
If it’s b mutual strangers we are done. If it’s a−1 mutual friends, adding person
1 results in a mutual friends. The case for |S| ≥ N(a, b − 1) can be argued
similarly.

Finally, observe that N(a, 2) = a and that N(a, b) = N(b, a). Therefore,
N(a, b) is finite for all a, b ≥ 2. In particular, N(a, a) is finite for all a ≥ 2.

Imagine a complete graph (all edges are present) where the edges are colored
either blue or red. For a given a, Ramsey’s theory tells us that any such graph,
if large enough, must either contain a set of a vertices where every pair is
connected by a blue edge, or a set of a vertices where every pair is connected
by a red edge. In other words, the graph must contain a “homogeneous” set of
a vertices. This result can be generalized to any number of colors. Can
you use this result to prove a weaker version of the monotonous subsequence
result, i.e. that given a large enough sequence of different numbers, there must
be a large enough increasing or decreasing subsequence?

11 Program termination by Ramsey

Consider the following program in pseudocode where x = {...} assigns x a value
from the set, and (x, y) = (..., ...) simultaneously assigns x and y their values:

(x,y,z)=({1,...,n},{1,...,n},{1,...,n})

while x>0 and y>0 and z>0

control={1,2,3}

if control==1 then

(x,y,z)=(x+1,y-1,z-1)

else

if control==2 then

(x,y,z)=(x-1,y+1,z-1)

else

(z,y,z)=(x-1,y-1,z+1)



It is typical to prove that a program terminates by finding a quantity that
is always decreasing. In the above program, obviously x + y + z decreases by
1 after every iteration. Therefore, one of x, y, or z will eventually reach zero
and the program will terminate. However, it is not always possible to find a
decreasing quantity, like in the following program:

(x,y,z)=({1,...,n},{1,...,n},{1,...,n})

while x>0 and y>0 and z>0

control={1,2}

if control==1 then

x={x,...,n}

y={y,...,n}

z=z-1

else

y={y,...,n}

x=x-1

Let xi be the value of x in iteration i. For every pair of iterations i < j,
we can show that either xj < xi or zj < zi: If between iterations i and j we
ever have control=1 then z will decrease. If we only have control=2 then x
will decrease. Now assume that the program runs for I iterations. Construct
a graph with I vertices where each vertex represents an iteration. Make edge
(i, j) blue if xj < xi and edge (i, j) red if zj < zi. By Ramsey’s theory, there
is a large set of vertices (iterations) that are homogeneous (either all connected
by blue or all connected by red). If the color is blue (or red), then x (or z) is
decreasing in these iterations. Since x ≤ n (and z ≤ n) at all times, there must
be a choice of I that will make x (or z) go to zero. The program cannot run for
more than I iterations.

Another way to prove the termination of this program is by constructing a
partial order relation. Consider the following relation on the tuples of the form
(zi, xi, yi), where zi, xi, yi are the values of the variable in iteration i.

(zi, xi, yi) ≺ (zj , xj , yj)⇔ (zi < zj) ∨ (zi = zj ∧ xi < xj)

It is easy to verify that ≺ is a partial order relation (simply verify anti-symmetry
and transitivity). Further more, (zi+1, xi+1, yi+1) ≺ (zi, xi, yi) (either z de-
creases or x decreases and z remains the same). This means some veriable (x
or z) will reach zero.


