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1 A weird proof

Contemplate the following:

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25
...

It looks like the sum of the first n odd integers is n2. Is it true? Certainly
we cannot draw that conclusion from just the few above examples. But let us
attempt to prove it. The nth odd number is 2n− 1, so our sum is the following:

n∑

i=1

(2i− 1) = 1 + 3 + . . . + (2n− 1) = [1 + 3 + . . . + (2n− 3)] + (2n− 1)

But if the sum of the first n odd integers is n2, then the sum of the first odd
n− 1 integers must be (n− 1)2. Therefore, our sum becomes

(n− 1)2 + (2n− 1) = n2 − 2n + 1 + 2n− 1 = n2

But is that legitimate? It seems that in our proof we used the very same fact
that we are trying to prove! Or did we? In fact we did not. We used the fact
for a smaller number (n−1 instead of n). Essentially, what we have established
is the following: if the sum of the first n− 1 integers is (n− 1)2, then the sum
of the first n integers is n2. And this works for any n. All we need now is a
base case for some value of n, say n0. But we have a base case because we
enumerated few cases above. This technique is known as proof by induction.
It is very simple, and least insightful. In deed, we did not gain any intuition
why the sum of the first n odd integers is n2 although we proved it. Here’s a
diagram that explains it.
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The number of dots in a given layer is exactly two plus the number of dots in
the previous layer. Starting with one dot in the first layer, each layer has an odd
number of dots. Obviously, we always end up with a square after any number of
layers. While this may offer a better intuition, induction remains an important
tool for proving a formula that has only been guessed at by observation.

Here’s another example that we have seen before. Let’s prove that the sum
of the first n integers is n(n + 1)/2.

1 + 2 + . . . + n = [1 + 2 + . . . + (n− 1)] + n =
(n− 1)n

2
+ n =

n(n + 1)
2

Again, the proof is only valid when a base case exists, which can be explicitly
verified, e.g. for n = 1. Observe that no intuition is gained here (but we know
by now why this holds).

2 Proof by induction

Assume that we want to prove a property of the integers P (n). A proof by
induction proceeds as follows:

• (base case) show that P (1), . . . , P (n0) are true for some n = n0

• (inductive step) show that [P (1) ∧ . . . ∧ P (n− 1)] ⇒ P (n) for all n > n0

In the two examples that we have seen so far, we used P (n− 1) ⇒ P (n) for the
inductive step. But in general, we have all the knowledge gained up to n− 1 at
our disposal. So what is a proof by induction in English terms? First verify that
your property holds for some base cases. Then given that your property holds
up to n− 1, you show that it must also hold for n. By the transitive property
of implication, you have proved your property holds for all n.

P (1) ∧ . . . ∧ P (n0) is true

[P (1) ∧ . . . ∧ P (n0)] ⇒ P (n0 + 1)

P (n0 + 1) is true

[P (1) ∧ . . . ∧ P (n0 + 1)] ⇒ P (n0 + 2)

P (n0 + 2) is true
...

That’s pretty much it! The rest of this note covers examples of proofs by
induction.



3 Some false proofs

Before we actually embark on a series of proofs by induction, let us make sure
we have a good understanding of the mechanism. I will first prove by induction
that the sum of the first n integers is

n2 + n +
√

π

2

Well, this is obviously true because

1 + 2 + . . . + n = [1 + 2 + . . . + (n− 1)] + n =
(n− 1)2 + (n− 1) +

√
π

2
+ n

=
n2 + n +

√
π

2
What is wrong? There is no base case.

I will now prove by induction that any integer greater than or equal to 18
can be expressed in the form 4x + 7y where both x, y ≥ 0 are integers. It is
certainly true for 18 when x = 1 and y = 2. So that will be my base case. Now
assume that the property holds up to some number n− 1, i.e. that n− 1 can be
expressed as 4x + 7y where x, y ≥ 0 are integers. I will show that the property
remains true for n. Observe that 4(2) + 7(−1) = 1. So

n = (n− 1) + 1 = 4x + 7y + [4(2) + 7(−1)] = 4(x + 2) + 7(y − 1)

What is wrong? y − 1 may be negative (if y = 0).
Finally, I will prove by induction that any n lines, no two of which are par-

allel, pass through a single point. I will start with few base cases:

n = 0: the statement is vacuously true
n = 1: there is only one line, so trivially they all pass through a single point
n = 2: the intersection of two lines is a single point

Now assume that this property holds up to n−1. I will show that it remains
true for n. Consider n lines l1, l2, . . . , ln. The first n−1 lines l1, l2, . . . , ln−1 must
pass through a single point, and that point must be the intersection of l1 and
l2, say point p. Now consider the following n− 1 lines: l1, l2, . . . , ln−2, ln. They
must also pass through a single point, and that point must be the intersection
of l1 and l2, the same point p. Therefore, all n lines pass through p. What is
wrong? Our n0 is 2. The inductive step does not work for all n > n0. It works
for all n > 3. Can you see why (you need 4 lines to make it work)?

This example also sheds some light on the question of how many base cases
are required in an inductive proof. In general, if your inductive step works for
all n > n0 for some n0, then your base cases must cover up to n0 (inclusive).



4 Example 1

Prove that the sum of the squares of the first n integers is n(n + 1)(2n + 1)/6,
i.e.

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6

When n = 1, this is 1(2)(3)/6 = 1. This will serve as our base case. Now,
for every n > 1, assume that the property holds up to n − 1 and show that it
remains true for n.

1 + 22 + . . . + n2 = [1 + 22 + . . . (n− 1)2] + n2

=
(n− 1)n[2(n− 1) + 1]

6
+ n2 =

n(n + 1)(2n + 1)
6

To appreciate the power of induction, I will prove this by simply relying on
our first two results, namely

n∑

i=1

i =
n(n + 1)

2

n∑

i=1

(2i− 1) = n2

The proof will require manipulations of sums.

n∑

i=1

i2 =
n∑

i=1

i∑

j=1

(2j − 1) =
n∑

i=1

[(n− i + 1)(2i− 1)]

The last equality holds because each term of the form 2i − 1 appears exactly
n − i + 1 times in the double sum. For instance, 1 appears n times, 3 appears
n−1 times, 5 appears n−2 times, etc... Now we break the sum into its different
parts:

n∑

i=1

i2 =
n∑

i=1

[(n− i+1)(2i−1)] =
n∑

i=1

2ni−
n∑

i=1

n−
n∑

i=1

2i2 +
n∑

i=1

i+
n∑

i=1

2i−
n∑

i=1

1

Now every term that does not depend on i can be taken outside the sum to give:

n∑

i=1

i2 = 2n

n∑

i=1

i− n

n∑

i=1

1− 2
n∑

i=1

i2 +
n∑

i=1

i + 2
n∑

i=1

i−
n∑

i=1

1

We can now isolate the term
∑

i2 and combine similar terms,

3
n∑

i=1

i2 = (2n + 3)
n∑

i=1

i− (n + 1)
n∑

i=1

1



3
n∑

i=1

i2 = (2n + 3)
n(n + 1)

2
− (n + 1)n

n∑

i=1

i2 =
(2n + 3)n(n + 1)− 2(n + 1)n

6
=

(2n + 1)n(n + 1)
6

5 Example 2

Prove that if a 6= 1, then
∑n

i=0 ai = 1 + a + a2 + . . . + an = (1− an+1)/(1− a).

For n = 0, the above sum is 1, which is equal to (1−a0+1)/(1−a). Now, for
every n > 0, assume the property holds up to n − 1 and show that it remains
true for n.

1+a+a2+. . .+an = (1+a+a2+. . .+an−1)+an =
1− an

1− a
+an =

1− an + an − an+1

1− a

Again, to appreciate the power of induction, an alternative proof would have
required a genuine observation that multiplying the sum by a corresponds to a
shift (as opposed to a simple verification):

a

n∑

i=0

ai =
n∑

i=0

ai+1 =
n+1∑

i=1

ai =
n∑

i=0

ai − 1 + an+1

(1− a)
n∑

i=0

ai = 1− an+1

6 Example 3

Prove that n3 − n is a multiple of 3 for all n ≥ 0.

When n = 0, this is 03 − 0 = 0, a multiple of 3. This will serve as our base
case. Now, for every n > 0, assume that the property holds up to n − 1 and
show that it remains true for n. But how do we proceed? Let’s express n3 − n
in terms of n− 1.

n3−n = [(n−1)+1]3−[(n−1)+1] = (n−1)3+3(n−1)2+3(n−1)+1−(n−1)−1

= (n−1)3−(n−1)+3[(n−1)2+(n−1)] = 3k+3[(n−1)2+(n−1)] = 3[k+(n−1)2+(n−1)]

7 Example 4

Prove that every integer can be expressed as the sum of distinct powers of 2.



When n = 0, we can express it as an empty sum (this sum contains no
powers of 2 and therefore they are distinct). If this sounds a bit awkward, take
the case when n = 1, which we can express as 20. Either one can serve as our
base case. Now, for every n > 0, assume that the property holds up to n − 1
and show that it remains true for n. If n is odd, then n− 1 is even. Therefore,
20 cannot appear as a power of 2 in the sum for n − 1. But n = (n − 1) + 20

so we are done. But what if n is even? Then n = 2 × m where m < n. By
multiplying by 2 all the powers of 2 in the sum for m we obtain n as a sum of
distinct powers of 2.

8 Example 5

Given a pile of n blocks, prove that we need n− 1 splits to end up with n piles,
each with exactly one block.

When n = 1, we need 0 = 1−1 splits. This will serve as our base case. Now,
for every n > 1, assume that the property holds up to n − 1 and show that it
remains true for n. Given n > 1 blocks, we must perform a first split. This will
split the pile into two piles of height k and n−k for some 1 ≤ k < n. Therefore,
1 ≤ n − k < n too. The two piles are now independent of each other, and we
need (k−1)+(n−k−1) splits to split the two piles. The total number of splits
is

1 + (k − 1) + (n− k − 1) = n− 1

9 Example 6

Consider the same pile splitting problem above. But now every time we split a
pile into two piles of height a and b, we receive ab points. Prove that the total
number of points, regardless of how we split, is n(n− 1)/2.

When n = 1, we don’t split and, therefore, we acquire 0 = 1(1−1)/2 points.
This will serve as our base case. Now, for every n > 1, assume that the property
holds up to n− 1 and show that it remains true for n. Given n > 1 blocks, we
must perform the first split. This will split the pile into two piles of height k and
n− k for some 1 ≤ k < n. Therefore, 1 ≤ n− k < n too. We acquire k(n− k)
points from the first split. The two piles are now independent of each other,
and we acquire k(k−1)/2 points from splitting the first and (n−k)(n−k−1)/2
points from splitting the second. The total number of points is

k(n− k) +
k(k − 1)

2
+

(n− k)(n− k − 1)
2

=
n(n− 1)

2

Can you relate this problem to the handshaking problem?



10 Example 7

The Fibonacci numbers form an infinite sequence:

0 1 1 2 3 5 8 13 21 34 55 89 . . .

The nth (we start at 0) Fibonacci number is the sum of the (n−1)st and (n−2)nd

Fibonacci numbers. Hence Fn = Fn−1 + Fn−2 with F0 = 0 and F1 = 1. It is
easy to obtain the nth Fibonacci number for any n if we start with F0 and F1

and repeatedly add the last two entries. However, can we find an expression for
Fn? This will be covered in the next topic on recurrences, but for now, we can
prove by induction that (as I said before, induction can sometimes be useful but
not insightful):

Fn =
1√
5

[(1 +
√

5
2

)n

−
(1−√5

2

)n]

Let φ = (1+
√

5)/2 and observe that 1−φ = (1−√5)/2. When n = 0, F0 =
[φ0−(1−φ)0]/

√
5 = 0. When n = 1, F1 = [φ1−(1−φ)1]/

√
5 = (2φ−1)/

√
5 = 1.

Observe that we need both of these for our base case since every Fn is expressed
in terms of the previous two (the inductive step below only works when n > 1
so our base cases must cover up to n = 1). Now for every n > 1, assume that
the property holds up to n− 1, and show that it remains true for n.

Fn = Fn−1 + Fn−2 =
1√
5
[φn−1 − (1− φ)n−1] +

1√
5
[φn−2 − (1− φ)n−2]

=
1√
5
φn

[ 1
φ

+
1
φ2

]
− 1√

5
(1− φ)n

[ 1
(1− φ)

+
1

(1− φ)2
]

Is it easy to verify that 1/φ + 1/φ2 = 1, the same holds for the term involving
(1− φ): φ and (1− φ) are the two solutions for x + 1 = x2. Therefore,

Fn =
1√
5

[(1 +
√

5
2

)n

−
(1−√5

2

)n]

11 Rules of thumb for induction

Here are some techniques to guide you when attempting to prove by induction.

• One inside the other: find the expression for (n−1) “inside” the expression
for n. This is often useful when dealing with a sum or a product of terms,
say n of them. Examples 1 and 2 fall under this category.

• Side by side: Put the expression for n−1 and the expression for n side by
side and see how you can get from one to another. Example 3 falls under
this category.

• Case analysis on n: For instance, you might want to consider the case
when n is even and the case when n is odd. Example 4 falls under this
category.



• Make a move: This can break the problem into two similar and indepen-
dent subproblems. Sometimes the move is general and represents a class
of moves. Making a move usually establishes a recurrence (see below).
Examples 5 and 6 fall under this category.

• Use a recurrence: A recurrence gives you the value of a function on n in
terms of values of the function on smaller input, e.g. n− 1 and/or n− 2.
This naturally guides the induction. Example 7 falls under this category.


