
Discrete Mathematics

Recurrences

Saad Mneimneh

1 What is a recurrence?

It often happens that, in studying a sequence of numbers an, a connection
between an and an−1, or between an and several of the previous ai, i < n, is
obtained. This connection is called a recurrence relation. In spirit, a recurrence
is similar to induction, but while induction is a proof technique, recurrence is
more like a definition method.

2 Cutting the plane

Consider n lines in the plane such that:

• no two lines are parallel

• no three lines pass through the same point

We refer to such a configuration as n lines in general position. The lines divide
the plane into a number of regions. How many regions do we get?

At the first glance, one might think that adding a line doubles the number of
regions. For instance, one line divides the plane into two regions; two lines into
four. However, it is easy to verify when n = 3 that this trend does not continue;
otherwise, we end up with 2n regions. At this juncture, it might be reasonable
to start experimenting with n = 3 lines. Then you will invariably get 7 regions.
With n = 4 lines, you will always get 11 regions. It looks like after adding the
nth line, the number of regions increases by n. Let’s prove this fact: The nth

line intersects the other n− 1 lines in exactly n− 1 distinct points (because the
lines are in general position). Tracing the nth line as it passes through these
n−1 points, we get to a new region every time we cross a point. So the number
of regions the nth line creates is one larger than the number of crossing points,
thus n.

So if Rn is the number of regions we get with n lines in general position,
then

Rn = Rn−1 + n

and we start with R1 = 2. We can easily guess (relate this to the triangular
numbers) that

Rn =
n(n + 1)

2
+ 1

which can be proved by induction.

3 Towers of Hanoi

The problem of the towers of Hanoi is based on a system of n discs of different
sizes that fit over three fixed pegs. At the start we have all the discs arranged
on peg one in size order smallest on top. The object is to transport this whole
pile to peg three by a series of moves. A move consists of transporting the top
disc from one peg to the top of a pile on either peg subject to the condition
that no disc is ever placed on a smaller disc. Let an be the minimum number
of moves required to complete the process. How big is an? It should be noted
that the easiest way of proving that this process can be performed at all is to
calculate an.

Eventually it will be necessary to move the bottom (largest) disc from peg
one to peg three. The turn before this is done all the (n − 1) other discs are
arranged on peg two. The minimum number of moves required to shift these to
peg two is an−1. Then after the bottom disc is moved, the (n− 1) smaller discs
must be reassembled on top of it. This again requires at least an−1 moves. This
proves the following recurrence:

an = 2an−1 + 1

from which an can be determined.
This recurrence, along with the initial condition a1 = 1, enables us to find

an. We have a2 = 2 · 1+1 = 3, a3 = 2 · 3+1 = 7, a4 = 2 · 7+1 = 15. It appears
that an = 2n − 1. Let’s confirm this by an induction proof. Our base case is
a1 = 1. For every n > 1, assume that the property holds up to n− 1, and prove
that it remains true for n.

an = 2an−1 + 1 = 2(2n−1 − 1) + 1 = 2n − 2 + 1 = 2n − 1

Another way to obtaining this result is by repeatedly evaluating an using
the recurrence:

an = 2an−1 + 1 = 2(2an−2 + 1) + 1 = 2(2(2an−3 + 1) + 1) + 1 = . . .

Continuing this way, we get a geometric series (the following equality can be
also proved by induction)

1 + 2 + 22 + . . . + 2n−1 =
2n − 1
2− 1

= 2n − 1

4 Fibonacci

Consider a staircase with n steps. We can walk up by either taking one or two
steps at a time. In how many ways can we go up the stairs? Let an denote this
number.Clearly a0 = 1 and a1 = 1. For n > 1, we must start by one of the two
options shown below (top view):

In the first case we can continue in an−1 ways, and in the second case we
can continue in an−2 ways. Since we start differently, by the addition principle:

an = an−1 + an−2

Therefore, we obtain a2 = 1 + 1 = 2, a3 = 1 + 2 = 3, a4 = 3 + 2 = 5,
a5 = 5 + 3 = 8, a6 = 8 + 5 = 13, etc... The sequence an resembles the well
known Fibonacci sequence.

n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55
an 1 1 2 3 5 8 13 21 34 55 89

Clearly, an = Fn+1. We will later obtain a formula for Fn.

5 Flags

A flag consists of n horizontal stripes, where each stripe can be any one of
blue, red, and white, no two adjacent stripes having the same color. Under
these conditions, the top stripe can be any of three colors, the second has two
possibilities, the third has two, and so one (each stripe avoiding the color of the
one above it). By the multiplication rule there are 3× 2n−1 possible flags.

Suppose now that, in order to avoid flying the flag upside down, the top
and bottom stripes should be of different colors. How many such flags with n
stripes are possible? Let an denote that number. If we let bn be the number
of flags with matching top and bottom, then an + bn = 3 × 2n−1. Here’s an
interesting observation: there is a one-to-one correspondence between flags of n
stripes with matching top and bottom, and flags of n− 1 stripes with different
top and bottom. Here’s why: Given a flag of n stripes with matching top and
bottom, we can remove the bottom stripe to uniquely obtain a flag of n − 1

stripes with different top and bottom. Similarly, given a flag of n − 1 stripes
with different top and bottom, we can duplicate the top stripe at the bottom
to uniquely obtain a flag of n stripes with matching top and bottom. By the
one-to-one correspondence, bn = an−1. Therefore,

an + an−1 = 3× 2n−1

Similarly,
an−1 + an−2 = 3× 2n−2

By multiplying the second equation by 2 and subtracting it from the first we
get:

an = an−1 + 2an−2

Knowing that a1 = 0 (why?) and a2 = 6, we should be able to solve for an. It
is now time to show how to solve this type of recurrence.

6 Solution for an = Aan−1 + Ban−2

Given the recurrence
an = Aan−1 + Ban−2

and two initial conditions, say a1 and a2, construct the following auxiliary equa-
tion:

x2 = Ax + B

Let p and q be the solutions of the equation.

Case 1: p 6= q
Then an = c1p

n + c2q
n satisfies the recurrence:

p2 = Ap + B

pn = Apn−1 + Bpn−2

c1p
n = c1Apn−1 + c1Bpn−2

Similarly,
c2q

n = c2Aqn−1 + c2Bqn−2

Therefore, after adding both sides:

c1p
n + c2q

n = A(c1p
n−1 + c2q

n−1) + B(c1p
n−2 + c2q

n−2)

an = Aan−1 + Ban−2

Case 2: p = q

First note that if this is the case then A = 2p and B = −p2 (because x2 = Ax+B
becomes equivalent to (x− p)2 = x2 − 2px + p2 = 0). Then an = c1p

n + c2npn

satisfies the recurrence:
p2 = Ap + B

pn = Apn−1 + Bpn−2

c1p
n = c1Apn−1 + c1Bpn−2

Similarly,
c2npn = c2Anpn−1 + c2Bnpn−2

c2npn = c2A(n− 1)pn−1 + c2B(n− 2)pn−2 + (c2Apn−1 + 2c2Bpn−2)︸ ︷︷ ︸
The isolated above quantity is zero. Therefore, after adding both sides:

c1p
n + c2npn = A[c1p

n−1 + c2(n− 1)pn−1] + B[c1p
n−2 + c2(n− 2)pn−2]

an = Aan−1 + Ban−2

In both cases, c1 and c2 can be obtained from the two initial conditions
by equating the expressions for a1 and a2 to the values given. We end up
with a solution for an that satisfies the recurrence and the two initial con-
ditions. A similar technique can be used to solve recurrences of the form
an = A1an−1 + A2an−2 + · · ·+ Akan−k by forming the auxiliary equation xk =
A1x

k−1 + . . . + Ak−1x + Ak, but we will not consider it here.

7 Let’s capture that rabbit!

The famous Fibonacci recurrence was associated by its inventor with a hypo-
thetical rabbit problem. Rabbits obey the following law: every pair of rabbits,
at least two months old, will produce one pair of rabbits every month. Starting
with one pair of newly born rabbits, the nth Fibonacci number, Fn, is the num-
ber of pairs at the beginning of the nth month (by convention F0 = 0.) Using
the above technique, let’s solve for Fn. Knowing that

Fn = Fn−1 + Fn−2

we form the auxiliary equation:

x2 = x + 1

which has two solutions φ = (1 +
√

5)/2 and 1− φ. Therefore, our solution for
Fn has the form:

c1φ
n + c2(1− φ)n

Let’s determine c1 and c2 from two initial conditions.

F0 = c1φ
0 + c2(1− φ)0 = c1 + c2 = 0

F1 = c1φ
1 + c2(1− φ)1 = c1φ + c2(1− φ) = 1

We obtain c1 = −c2 = 1/(2φ− 1) = 1/
√

5. Therefore,

Fn =
1√
5
[φn − (1− φ)n]

Observe that (1− φ)n is approximately zero when n is large; therefore, Fn can
be obtained for large n by finding the integer value closest to the following:

Fn ≈ 1√
5
φn

8 Let’s fly the flag

We previously determined that

an = an−1 + 2an−2

is the number of “good” flags. Let’s solve for an. We form the auxiliary equation:

x2 = x + 2

which has two solutions 2 and −1. Therefore, our solution for an has the form:

c12n + c2(−1)n

Let’s determine c1 and c2 from two initial conditions.

a1 = c121 + c2(−1)1 = 2c1 − c2 = 0

a2 = c122 + c2(−1)2 = 4c1 + c2 = 6

We obtain c1 = 1 and c2 = 2. Therefore,

an = 2n + 2(−1)n

9 Another example

Let’s solve the recurrence an = 4an−1 − 4an−2 with a0 = 0 and a1 = 2. We
form the auxiliary equation:

x2 = 4x− 4

which has one solution 2 (technically two solutions that are equal). Therefore,
our solution for an has the form:

c12n + c2n2n

Let’s determine c1 and c2 from the two initial conditions.

a0 = c120 + c2(0)20 = c1 = 0

a1 = c121 + c2(1)21 = 2c1 + 2c2 = 2

We obtain c1 = 0 and c2 = 1. Therefore,

an = n2n

10 Generating functions

Going back to the flag problem, the first recurrence that we established was

an = −an−1 + 3× 2n−1

which does not have the form an = Aan−1 + Ban−2. Generating functions
represent another method for solving recurrences that we will not fully explore.
The generating function of a sequence a0, a1, a2 . . . is defined as

f(x) =
∞∑

i=0

aix
i = a0 + a1x + a2x

2 + a3x
3 + . . .

For example, the generating function of the Fibonacci sequence is

x + x2 + 2x3 + 3x4 + 5x5 + . . .

Sometimes, given a recurrence, it is possible to find the generating function of
the sequence and then find an by reading off the coefficient of xn. I will illustrate
this for the flag problem.

f(x) = a1x + a2x
2 + a3x

3 + . . .

= a1x + (3× 2− a1)x2 + (3× 22 − a2)x3 + . . .

= a1x + 3(2x2 + 22x3 + . . .)− (a1x
2 + a2x

3 + . . .)

= 0 + 6x2(1 + 2x + 22x2 + . . .)− xf(x)

We can always assume that |2x| < 1 so the geometric series above will converge.

f(x) = 0 + 6x2 1
1− 2x

− xf(x)

f(x) =
6x2

(1 + x)(1− 2x)
= 2x2

(2
1− 2x

+
1

1 + x

)

Expanding back into geometric series, we get:

f(x) = 4x2(1 + 2x + 22x2 + . . .) + 2x2(1− x + x2 − . . .)

Reading off the coefficient of xn gives

an = 4(2)n−2 + 2(−1)n−2 = 2n + 2(−1)n

11 Sorting

Consider the task of sorting a list of n numbers from smallest to largest. One
possible algorithm is the following: identify the smallest number in the list and
swap it with the first number. This correctly places the smallest number at
the beginning of the list. The process can be now repeated on the remaining
numbers by considering them as a list of n− 1 numbers.

To identify the smallest number in a list of n numbers one needs to make
n− 1 comparisons because each comparison can eliminate one number as being
not the smallest. Therefore, the total number of comparisons is

(n− 1) + (n− 2) + . . . + 1 =
n(n− 1)

2
≈ n2

2

This algorithm is called selection sort. We say that selection sort has an order
n2 running time, denoted O(n2).

A better way to sort is using the idea of merging sorted lists. Given a list of
n numbers, split the list in two equal halves (or almost equal if n is not even).
If we can manage to sort these two halves separately, then we can obtain a
sorted list by merging them as follows. Compare the first (smallest) numbers
in the lists, and take the smaller as the first number of a new list, crossing it
out of its list. Repeat the process to find the second smallest, and so on until
one of the two lists is exhausted. Append the other list to the end of the new
list. The number of comparisons is at most n− 1 because each time we make a
comparison we cross out a number.

However, sorting the two halves of the original list using selection sort is
not going to buy us any gain, because the number of comparisons would be
approximately

(n/2)2

2
+

(n/2)2

2
+ n− 1 = n2/4 + n− 1

This is still an O(n2) algorithm. But what happens if we recursively sort the
two halves using the same method? For simplicity of illustration, let us assume
that n is a power of 2, so we can always divide n by 2 until we get 1. Let tn be
the number of comparisons performed on a list of n numbers. Then

tn = 2tn/2 + n− 1

Let an = t2n , then
an = 2an−1 + 2n − 1

with a0 = 0 (why?). Iterating this few times reveals that an = 2n(n − 1) + 1
which can then be proved by induction (try). This means

tn = alog2 n = 2log2 n(log2 n− 1) + 1 = n(log2 n− 1) + 1

Another possibility is to sacrifice accuracy and seek an upper bound by
saying that n comparisons are needed (as opposed to n− 1) to merge two lists
of size n/2. Then

tn = 2tn/2 + n

an = 2an−1 + 2n

Similarly,
an−1 = 2an−2 + 2n−1

By multiplying the second equation by 2 and subtracting it from the first we
get:

an = 4an−1 − 4an−2

with a0 = 0 and a1 = 2 (why?). We already found the solution for this as
an = n2n. Therefore,

tn = alog2 n = log2 n2log2 n = n log2 n

This algorithm is called merge sort and it makes O(n log n) comparisons, an
improvement over the O(n2) selection sort algorithm.

12 Traveling in Manhattan and the Catalan num-
bers

Imagine traveling in Manhattan. How many shortest paths can you take by
walking on lines going from point A to point B shown below? Note that on a

A

B

shortest path you can only move to the right or up.
If we encode each path by a string of zeros (right moves) and ones (up

moves), we will observe that every string has length 8 because every path must
consist of 8 moves. Moreover, 5 of those moves must be to the right and 3 must
be up. Therefore, our binary string of length 8 will contain exactly 5 zeros and
3 ones. It is not hard to see that there is a one-to-one correspondence between
shortest paths and binary strings of 5 zeros and 3 ones. Every shortest path
can uniquely be encoded by such a string, and conversely every such a string
can uniquely identify a path. Therefore, the number of shortest paths is exactly
the number of binary strings with 5 zeros and 3 ones. How many are there?
Well, we have to choose 5 zeros from 8 bits (and the remaining 3 bits will be 1).
Equivalently, we can choose 3 ones from 8 bits (and the remaining 5 bits will

be 0). Hopefully this should not be a surprise because you know by now that(
n
k

)
=

(
n

n− k

)
. The number of shortest paths is

(
8
5

)
=

(
8
3

)
= 56

In general, if we have an m× n grid, the number of shortest paths will be
(

m + n
n

)
=

(
m + n

m

)

and if the grid is a square grid, i.e. m = n, then that number will be
(

2n
n

)

Suppose we now have a square n × n grid, and ask for the number Cn of
shortest paths from point A to point B which never go above the diagonal
AB. Let’s call these the “good” paths. For the case of n = 3 shown below, there
are 5 such paths; encoded as binary strings they are: 010101, 010011, 001101,
001011, 000111. Therefore, C3 = 5.

A

B

Any good path from A to B must touch the diagonal at some point prior to
reaching B, even if this happens only at A. Let C(i, i) be the last such point,
where 0 ≤ i < n (refer to the figure below). There are Ci good paths from A
to C. The path must then proceed from C to D and eventually to E, but it
must never go above the diagonal DE, since otherwise this would invalidate
the choice of C. But D and E define a square grid of size n − i − 1, so there
are Cn−i−1 good paths from D to E. Therefore, by the multiplication principle,
there are CiCn−i−1 good paths with (i, i) as the last contact with the diagonal
AB.

Since i can take any value from 0 to n − 1, it follows from the addition
principle that

Cn = C0Cn−1 + C1Cn−2 + C2Cn−3 + . . . + Cn−1C0

with an initial condition C0 = 1 because in a grid of size 0, where A and B
coincide, there is only one way to go from A to B on a shortest path without
going above the diagonal; simply stay there!

A(0,0)

B(n,n)

C(i,i)

n-i-1

D

E

The sequence Cn defines the Catalan numbers:

1 1 2 5 14 42 139 429 . . .

but can we find a better expression for Cn? One could possibly solve the recur-
rence using the method of generating functions. But there is an easier way using
a one-to-one correspondence. Observe that the number of good paths from A

to B must be equal to the total number of paths
(

n
2

)
minus the number

of shortest paths which do go above the diagonal AB (let’s call these the bad
paths).

Consider any bad path. There will be a first point on that path above the
diagonal AB, say R(i, i + 1). If we replace the part of the path from A to R by
its mirror image with respect to GF (refer to the figure below), then we get a
shortest path from H(−1, 1) to B(n, n). Conversely, any shortest path from H
to B must cross GF somewhere, and defines precisely one bad path from A to
B (by mirroring).

Therefore, the number of bad paths from A to B is equal to the number of
shortest paths from H to B, which is

(
(n + 1) + (n− 1)

(n + 1)

)
=

(
2n

n + 1

)

Finally,

Cn =
(

2n
n

)
−

(
2n

n + 1

)
=

(
2n
n

)
− n

n + 1

(
2n
n

)
=

1
n + 1

(
2n
n

)

Catalan numbers appear in many situations. One immediate interpretation
is that Cn is the number of binary strings of length 2n containing exactly n
zeros and n ones, such that the number of 1s up to a point never exceeds the

A(0,0)

B(n,n)

R(i,i+1)

F

GH(-1,1)

number of 0s. If we replace 0 by ’(’ and 1 by ’)’, Cn gives us the number of valid
parenthesized expressions of length 2n (with n pairs of parenthesis).

In how many ways can we carry out the sum a1 + a2 + . . . + an? Let’s take
the example of n = 4, so we have a1 + a2 + a3 + a4. We can do the following:

a1 + (a2 + (a3 + a4))

a1 + ((a2 + a3) + a4)

(a1 + a2) + (a3 + a4)

(a1 + (a2 + a3)) + a4

((a1 + a2) + a3) + a4

If Sn is the number of ways of carrying out the sum a1 + a2 + . . . + an, it is not
hard to see that S1 = 1 and S2 = 1 and that

Sn = S1Sn−1 + S2Sn−2 + . . . + Sn−1S1

Sn behaves exactly like Cn with one index shift. Therefore, Sn = Cn−1.

13 Stirling numbers

Consider partitioning a set of size n into k subsets. This is similar to a problem
that we have seen before, namely

x1 + x2 + . . . + xk = n

where xi ≥ 0 is an integer. But there is difference. In the equation above,
the partitions are labeled. What is being partitioned is not. Now we have the
opposite. The partitions are not labeled, and what is being partitioned is. For
example, while 4 can be partitioned into two (labeled) parts as follows (5 ways):

|....
.|...
..|..
...|.
....|

the S = {1, 2, 3, 4} can be partitioned into two subsets in the following ways:
{1} ∪ {2, 3, 4}, {2} ∪ {1, 3, 4}, {3} ∪ {1, 2, 4}, {4} ∪ {1, 2, 3}, {1, 2} ∪ {3, 4},
{1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3}.

Let S(n, k) denote the number of ways we can partition a set of size n into
k subsets. Then, S(4, 2) = 7. It is trivial that S(n, 1) = S(n, n) = 1. For other
values of k, there is a nice recurrence for S(n, k).

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

where 1 < k < n. Why is the above recurrence true? In any partition of S, the
first element can appear in a subset by itself or can occur in a larger subset.
If it appears by itself, then the remaining n − 1 elements are partitioned into
k− 1 subsets, and there are S(n− 1, k− 1) ways in which this can be done. On
the other hand, if the first element occurs in a subset of size at least two, the
remaining n − 1 elements are partitioned into k subsets - this can be done in
S(n−1, k) ways - and the first element is introduced into on of these k subsets -
and this can be done in k ways. So by the addition and multiplication principles,
we have S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

It is not hard to prove the following interesting equality (define S(m, 0) = 0
for m > 0 and S(0, 0) = 1):

nm =
n∑

k=0

S(m, k)
(

n
k

)
k!

We will do this by a combinatorial argument. Consider placing m labeled balls
into n labeled bins. There are nm ways of doing this (why?). Now imagine

that we do it by first choosing a subset of bins of size k (can be done in
(

n
k

)

ways), then partitioning the balls into k subsets (can be done in S(m, k) ways),
and finally assigning the k subsets to the k bins (can be done in k! ways). By

the multiplication principle, S(m, k)
(

n
k

)
k! is the number of ways of placing

m balls into exactly k of the n bins. By the addition principle, summing up
from k = 1 to k = n should give us the total nm.

As a special case when k = n, S(m,n)n! is the number of ways of placing m
labeled balls into exactly n bins. It should be clear that this is also the number

of onto functions f : X → Y when |X| = m and |Y | = n. It is possible to show
that

S(m,n)n! =
n∑

k=0

(−1)n−k

(
n
k

)
km

which is sort of an inverted form of the above formula for nm. Since S(m,n)n!
is the number of onto functions from X to Y , it must be equal to nm (the
total number of functions) minus the number of functions that leave at least
one element of Y unmapped. Observe that the number of functions that leave
a given k elements of Y unmapped is (n − k)m. Therefore, by the inclusion-
exclusion principle:

S(m,n)n! = nm−
[(

n
1

)
(n− 1)m −

(
n
2

)
(n− 2)m + . . . + (−1)n−1

(
n
n

)
(n− n)m

]

︸ ︷︷ ︸
number of functions that leave some elements of Y unmapped

S(m,n)n! =
n∑

k=0

(−1)k

(
n
k

)
(n−k)m =

n∑

k=0

(−1)n−k

(
n

n− k

)
km =

n∑

k=0

(−1)n−k

(
n
k

)
km

Note that the above quantity is zero when m < n.
Example: consider the task of ranking n movies. You may put movies in

the same rank and you may exclude movies from being ranked at all. In how
many ways can we perform this task? Putting i movies into j ranks can be done
by first partitioning the i movies into j sets (in S(i, j) ways) and then ordering
the j sets (in j! ways), leading to S(i, j)j! ways. Therefore, the total number of
ways of ranking n movies is:

n∑

i=0

(
n
i

) i∑

j=0

S(i, j)j! =
n∑

i=0

i∑

j=0

j∑

k=0

(
n
i

)
(−1)j−k

(
j
k

)
ki

14 Balls and bins

In this section we consider the different variations of placing n balls in k bins.
The results are summarized in the table below:

Balls Bins Any Bin Number
Labeled Labeled Empty of Ways

No Yes No
(

n− 1
n− k

)

No Yes Yes
(

n + k − 1
n

)

Yes No No S(n, k)
Yes No Yes S(n, 1) + S(n, 2) + . . . + S(n, k)
Yes Yes No S(n, k)k!
Yes Yes Yes kn

The second entry refers to the problem

x1 + x2 + . . . + xk = n

where xi ≥ 0 are integers. The first entry refers to the problem

x1 + x2 + . . . + xk = n

where xi ≥ 1 are integers, which is equivalent to:

x1 + x2 + . . . + xk = n− k

where xi ≥ 0 are integers (why?).
The case where both balls and bins are unlabled is related to unordered in-

teger partitions that we don’t cover here. For instance, 5 can be partitioned in
the following ways:

1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 2
1 + 2 + 2
1 + 1 + 3
2 + 3
1 + 4
5

