
Discrete Mathematics

Number theory

Saad Mneimneh

1 Divisibility and primes

The focus of this entire note is on positive integers. I will start by the basic
notion of divisibility. We say that a divides b, or a is a divisor of b, or b is a
multiple of a, if there exists an integer m such that

b = am

We also denote this by a | b (a divides b). If a is not a divisor of b, the we write
a |6 b, but we can still talk about division by a with a remainder r. Given any
two integers a and b, there is a unique way to write (q and r are integers)

b = aq + r

where 0 ≤ r < a. The proof is by contradiction. Assume b = aq1 +r1 = aq2 +r2

and, without loss of generality, let r2 > r1. Then 0 < r2 − r1 < a. But
r2 − r1 = b − aq2 − (b − aq1) = a(q1 − q2). Therefore,

0 < a(q1 − q2) < a

which is impossible since q1 − q2 is an integer.
The following relation between divisibility and remainders will prove to be

useful later on. Let r be the remainder of the division of b by a i.e. b = aq + r
(0 ≤ r < a), then

d | b and d | a ⇔ d | a and d | r

We have to prove both directions. If d | b and d | a, then b = dm1 and
a = dm2. Therefore, r = b − aq = dm1 − dm2q = d(m1 − m2q) ⇒ d | r.
Conversely if d | r and d | a, then r = dm3 (and a = dm2). Therefore,
b = aq + r = dm2q + dm3 = d(m2q + m3) ⇒ d | b.

An integer p > 1 is called prime if it is not divisible by any integer d such
that 1 < d < p. In other words, p is prime if it is divisible by only 1 and p
(we are excluding negative integers here). An integer n > 1 that is not prime is
composite.

2 The Euclidean algorithm

Consider two positive integers a0 ≥ a1. The greatest common divisor of a0 and
a1, denoted gcd(a0, a1) is the largest integer g such that g | a0 and g | a1, i.e. g
is the largest integer that divides both a0 and a1.

The first observation we can make is that gcd(a0, a1) always exists because
1 | a0 and 1 | a1. The second observation we can make is that if a0 = a1q1 + r1,
then (from above)

g | a0 and g | a1 ⇔ g | a1 and g | r1

It follows that
gcd(a0, a1) = gcd(a1, r1)

This suggests a recursive algorithm for finding the greatest common divisor, the
Euclidean algorithm. We compute the sequence

a0 a1 . . . ak ak+1

where
ai = ri−1, i > 1

ai−2 = ai−1qi−1 + ri−1, i > 1

ak+1 = 0

The sequence is strictly decreasing and, therefore, ak+1 = 0 is guaranteed for
some k. We can easily show that gcd(a0, a1) = ak, as follows:

gcd(a0, a1) = gcd(a1, a2) = . . . = gcd(ak−1, ak)

Since ak+1 = rk = 0, ak−1 is a multiple of ak and hence gcd(ak−1, ak) = ak.
As an example, to compute the gcd(300, 18), we successively find the re-

mainder of the division of ai by ai+1 to obtain the following sequence.

300 18 12 6 0

which reveals that gcd(300, 18) = 6.

3 Why not brute force?

In principle, to find gcd(a0, a1) we can try all integers from a1 down to 1. The
first one that divides both a0 and a1 must be the greatest common divisor. So
why don’t we do it this way and save ourselves the more complicated theory?
The reason is efficiency. In the worst case, one would have to try all integers
in {1, 2, . . . , a1}. Since a1 can be represented using log a1 bits, the running
time of such a brute force algorithm is exponential in the size of its input. In
comparison, the Euclidean algorithm requires k steps. Let’s discover how large
k is.

Observe that since ai−2 > ai−1, qi−1 ≥ 1. Therefore,

ai−2 = ai + ai−1qi−1 ≥ ai + ai−1

In addition, we have
ak−1 ≥ 2 (otherwise ak = 0)

ak ≥ 1 (the gcd)

Comparing this to the Fibonacci sequence

Fn = Fn−1 + Fn−2

F3 = 2

F2 = 1

we see that ai is always an upper bound on some Fibonacci number.

F0 F1 F2 F3 . . . Fk+2−i . . . Fk+2

0 1 1 2
0 ak ak−1 . . . ai . . . a0

Fk+2−i ≤ ai

Fk+2 ≤ a0

We can prove by induction that Fn ≥ cφn−1 for some constant c and, therefore,

cφk+1 ≤ a0

k ≤ logφ

a0

c
− 1

This shows that the number of steps in the Euclidean algorithm is logarithmic
in a0, which means linear in the number of bits required to represent a0. The
above table also shows that the worst case occurs when ai = Fk+2−i for every
i = 0 . . . k, i.e. when a0 and a1 are consecutive Fibonacci numbers. Here’s an
example of the sequence when a0 = 13 and a1 = 8.

13 8 5 3 2 1 0

4 The extended Euclidean algorithm

We can extend the Euclidean algorithm to compute xi and yi such that

ai = a0xi + a1yi

In other words, every ai can be expressed as a linear combination of a0 and a1.
To see this, we set x0 = 1, y0 = 0 and x1 = 0, y1 = 1. This will satisfy the
property for a0 and a1, the base case. We can then proceed by induction.

ai = ai−2 − ai−1qi−1 = a0xi−2 + a1yi−2 − qi−1(a0xi−1 + a1yi−1)

= a0(xi−2 − qi−1xi−1) + a1(yi−2 − qi−1yi−1)

which gives the following recurrences for xi and yi

xi = xi−2 −
ai−2 − ai

ai−1
xi−1

yi − yi−2 −
ai−2 − ai

ai−1
yi−1

Now gcd(a0, a1) = ak = a0xk + a1yk, so the greatest common divisor of a0

and a1 can also be expressed as a linear combination of a0 and a1.
Given two positive integers a and b, gcd(a, b) = ar+bs for some two integers

r and s. Observe that since 0 < gcd(a, b) ≤ min(a, b) either r > 0, s ≤ 0 or
r ≤ 0, s > 0. Furthermore, we can increase r and decrease s using the following
trick:

gcd(a, b) = ar + bs = a(r + b) + b(s − a)

until r > 0, s ≤ 0. Therefore, we can make

gcd(a, b) = ar − bs

where r > 0, s ≥ 0. Henceforth, we can decrease r and decrease s using a similar
trick:

ar − bs = a(r − b) − b(s − a)

until r ≤ b. When this happen gcd(a, b) ≤ ab − bs = b(a − s) so a − s > 0 and
s < a. Therefore, we can state the following:

Given two positive integers a and b,

gcd(a, b) = ar − bs = b(a − s) − a(b − r)

where 0 < r ≤ b and 0 ≤ s < a. The Euclidean algorithm finds one of the above
two combinations.

5 Co-primes (relatively prime)

Two positive integers are said to be co-primes or relatively prime if their great-
est common divisor is 1. For co-primes, we can reverse the direction of the
implication of the Euclidean algorithm:

gcd(a, b) = 1 ⇔ ar − bs = 1 for some integers r, s

To prove this equivalence, we need to prove both direction of the implication.
The first direction is trivial, by the Euclidean algorithm, gcd(a, b) = 1 ⇒ ar −
bs = 1 for some integers r and s. To prove the second direction, let d be a
common divisor of a and b, thus a = dn and b = dm for some integers n,m. If
ar − bs = 1, then dnr − dms = d(nr − ms) = 1. Therefore, d must be 1.

An interesting application is that two co-primes a and b can be combined to
generate any integer value. Obviously, since ar− bs = 1, then a(nr)− b(ns) = n
for every n. This is the trick behind the water juggling puzzle that we talked
about before. Which numbers are co-primes? Any two prime numbers are co-
primes (obvious). Any two consecutive integers are co-primes (try to prove).
Similarly, any two consecutive odd numbers are co-primes (try to prove).

Here’s a more interesting property of co-primes. If gcd(a, b) = 1, then every
integer n ≥ (a−1)(b−1) can be expressed as ax+by, where x, y ≥ 0. Obviously
we can set x and y to obtain arbitrarily large numbers. So we will prove the
lower bound by considering a number n = ax + by and showing that n − 1 can
be expressed similarly as long as it greater than or equal to (a− 1)(b− 1). Note
that this is not a proof by induction. It is just a way to figure out the bound
beyond which we cannot guarantee that the statement holds.

Let n = ax + by. Since gcd(a, b) = 1, we know that ar − bs = 1 and
b(a − s) − a(b − r) = 1 where 0 < r ≤ b and 0 ≤ s < a. Then

n − 1 = a(x − r) + b(y + s)

n − 1 = a(x + b − r) + b(y − a + s)

The statement for n− 1 will fail if x− r < 0 and y − a + s < 0, i.e. if x ≤ r − 1
and y ≤ a − s − 1. So the smallest bound that we can guarantee is

a(r − 1) + b(a − s − 1) = ar − a + ba − bs − b = 1 − a − b + ba = (a − 1)(b − 1)

6 Fundamental theorem of arithmetic

Every integer can be written as a product of primes, we call it prime factoriza-
tion. This can be easily proved by induction. Our base case is n = 2, which is
itself prime. Assume that the property holds up to n− 1 and let’s prove that it
remains true for n. Now for every n > 2, we make the following case analysis. If
n is prime, we are done. If n is composite, then we can find two integers a < n
and b < n such that n = ab (otherwise n would be prime). Both a and b can be
written as a product of primes, so we are done.

The fact that every integer can be factored into primes is not so deep. What
is fascinating is that this factorization is unique (up to the order of the prime
factors). This is called the fundamental theorem of arithmetic. The proof of
this theorem can be done by contradiction.

Let n be an integer such that:

n = p1p2 . . . pk = q1q2 . . . qt

where p’s and q′s are prime numbers with p1 6= qi for all i = 1 . . . t. Since
p1 6= q1 and they are both prime, gcd(p1, q1) = 1. By the Euclidean algorithm
we can write

p1r − q1s = 1

If we multiply both sides by q2 . . . qt we obtain:

(p1r − q1s)q2 . . . qt = q2 . . . qt

p1rq2 . . . qt − sq1q2 . . . qt = q2 . . . qt

p1rq2 . . . qt − sp1 . . . pk = q2 . . . qt

p1(rq2 . . . qt − sp2 . . . pk) = q2 . . . qt

By factoring (rq2 . . . qt − sp2 . . . pk) into primes, we obtain two prime factoriza-
tions for q2 . . . qt < n, a contradiction because we could have started with the
smallest n that admits two (or more) prime factorizations.

7 Some nice properties of primes

Let p be prime.

• p | ab ⇒ p | a or p | b

• a | b, p | b, and p |6 a ⇒ p | b
a

Let b/a be a reduced fraction, then

• b
a has a finite decimal representation ⇔ a = 2x5y where x, y ≥ 0

All of these properties can be proved using the fundamental theorem of
arithmetic. While some of them may seem trivial, none of them holds without
the uniqueness of prime factorization. Let’s start with the first one. If a prime
p divides a product, then it must divide one of the factors. This can be seen by
writing:

p | ab ⇔ ab = mp

By factoring a, b, and m into primes, we obtain two products of primes that are
equal. But since prime factorization is unique, p must appear on the left hand
side of the equation. Therefore, p must be a prime factor of a or b. Note that
this is not true if p is not prime; for instance, 10 | 4 × 5 but 10 |6 4 and 10 |6 5.

On to the second property. Let b/a = k, i.e. b = ak, then since p | ak, p
must divide a or k. But we know that p |6 a; therefore, p | k.

Consider the term

(
p
k

)

, where p is prime and 0 < k < p. Can you show

that p |
(

p
k

)

?

Finally, given a fraction b/a we want to show that it has a finite decimal
representation if and only if a has exactly two prime factors, 2 and 5.

If b/a has a finite decimal representation, then there exists an x ≥ 0 such
that b10x/a = c is an integer. Therefore,

b10x = ac

By the fundamental theorem of arithmetic, when we factor both sides of the
equation, all prime factors of a must appear on the left hand side. But a and
b share no prime factors because the fraction is reduced. Therefore, all prime
factors of a must be those of 10 = 5 × 2. Conversely, if a = 2x5y, then b/a can
be expressed as

b

a
= b

1

2

1

2
. . .

1

2
︸ ︷︷ ︸

1

5

1

5
. . .

1

5
︸ ︷︷ ︸

x y
Each of the terms above has a finite decimal representation, so their product
has a finite decimal representation.

8 Distribution of primes

We previously proved that primes are infinite. In this section, we study a little
bit their distribution. Primes are quite frequent, although it is possible to find
arbitrarily large stretches with no primes. For instance, consider the following
k integers:

(k + 1)! + 2 , (k + 1)! + 3 , . . . , (k + 1)! + (k + 1)

None of them can be prime (why?) But if we let π(n) be the number of primes
less or equal to n, then

π(n) ∼ n

lnn

The approximation is better for large values of n. This is known as the prime
number theorem and a proof of it is beyond the scope of the course. The prime
number theorem has important implications in computer science. For example,
if we pick a random integer in {n, n + 1, n + 2, . . . ,m}, what is the probability
that it is prime? This is approximately

π(m) − π(n)

m − n
∼ m/ lnm − n/ ln n

m − n

and if m = 2n, this is

2

ln 2n
− 1

lnn
=

2

lnn + ln 2
− 1

lnn
∼ 1

lnn

One might argue that this is pretty small, especially if n is large. But what
if we repeat our experiment? If the probability of getting a prime is 1/ ln n,
then we expect to repeat ln n times to get a prime. But ln n is a reasonable
number of repetitions, which is only linear in the size of the representation of
n. Therefore, we can find a prime quickly. The ability to pick a large prime
number is an essential part of modern cryptography.

9 Congruence as an equivalence relation

The mathematician Gauss introduced the following notation, knows as congru-
ence:

a ≡ b (mod n) ⇔ n | a − b

We say that a is congruent to b modulo m, equivalently a and b have the same
remainder in the division by n, or a− b is divisible by n. Sometimes mod n is
used as an operator like in:

x mod n

which means the remainder of x in the division by n.
The congruence notation is useful because it defines an equivalence relation

on integers. An equivalence relation is reflexive, symmetric, and transitive.

• reflexive: a ≡ a (mod n)

• symmetric: a ≡ b (mod n) ⇔ b ≡ a (mod n)

• transitive: a ≡ b (mod n), b ≡ c (mod n) ⇒ a ≡ c (mod n)

Congruence behaves quite similar to equality when it comes to addition, subtrac-
tion, and multiplication (and sometimes division). Assume that a ≡ b (mod n)
and c ≡ d (mod n). Then we can show the following: a+c ≡ b+d (mod n). To
see this, n | a− b and n | c−d; therefore, n | (a− b)+ (c−d) = (a+ c)− (b+d),
equivalently a + c ≡ b + d (mod n). Similarly, we can show that a − c ≡
b − d (mod n) and ac ≡ bd (mod n) (division will have to wait a little bit).
This means that we can move variables from one side of the ≡ symbol to the
other just like we do with equality. For example:

a ≡ b (mod n)

b ≡ b (mod n)

a + b ≡ 2b (mod n)

Similarly,
a ≡ b (mod n)

b ≡ b (mod n)

a − b ≡ 0 (mod n)

The same applies for multiplication and division, but this has to wait until we
define division properly (recall that we are only dealing with integers here).

Every equivalence relation defines equivalence classes. An equivalence class
is a set of elements that are equivalent. For instance, let n = 7. Then since
the remainder in division by 7 can take the values 0, 1, 2, 3, 4, 5, and 6, every
integer must be congruent to one of these. This virtually classifies the integers
into 7 classes:

{. . . ,−14,−7, 0, 7, 14, . . .}
{. . . ,−13,−6, 1, 8, 15, . . .}
{. . . ,−12 − 5, 2, 9, 16, . . .}
{. . . ,−11,−4, 3, 10, 17, . . .}
{. . . ,−10,−3, 4, 11, 18, . . .}
{. . . ,−9,−2, 5, 12, 19, . . .}
{. . . ,−8,−1, 6, 13, 20, . . .}

Now if we replace every integer by the representative of its class, say the
smallest non-negative integer in the class, then we can define a new world of
arithmetic using only the set {0, 1, 2, 3, 4, 5, 6}. In fact, this is what we do with
the days of the week (say 0 is Sunday)! For instance, 4 + 5 = 2 (think of it as
Thursday plus five days is Tuesday). What we really mean is 4+5 ≡ 2 (mod 7).
This will definitely work for addition, subtraction, and multiplication (simply
replace every integer with its class representative), and we call it modular arith-
metic.

But what about division in modular arithmetic? It is quite reasonable to
say, for instance, that 6/3 = 2. But what is 2/3? It is not an integer! or is it?
Let’s say that 2/3 = x, where x is an integer. This means 3x = 2 (yes, we are
defining division as the inverse of multiplication). Is there such an x? There
is in our new system! Try x = 3. What about 3/2? If 3/2 = y, then 2y = 3
and, therefore, y = 5 (by trial and error). But this means that 3 × 5 should be
1 (it is, verity!). Does division always behave nicely? The heart of the matter
is to find inverses. Say I want 1/a = x mod n, i.e. to find an x such that
ax ≡ 1 (mod n). Does x exist, and if it does, is it unique? The answer is YES
and YES if n is prime. More generally, if a 6= 0, we call a−1 the multiplicative
inverse of a, i.e.

aa−1 ≡ 1 (mod n)

then a−1 uniquely exists if and only if n and a are co-primes. If aa−1 ≡ 1 (mod
n), then aa−1 = kn + 1 so a(a−1) − n(k) = 1, thus a and n are co-primes.
I will present two proofs for the other direction, one based on the Euclidean
algorithm, and one on the fundamental theorem of arithmetic.

Euclidean algorithm: If n and a are co-primes, then there exists r, s ≥ 0
such that ar − ns = 1. Therefore, ar = ns + 1, i.e. ar ≡ 1 (mod n). As a
result a−1 = r mod n. Now assume ax ≡ 1 (mod n) for x < n, then a−1ax ≡
a−1 (mod n). Therefore, x ≡ a−1 (mod n). Since x < n and a−1 < n, they
must be equal.

Properties of primes: Assume ax ≡ ay (mod n) with x > y, then a(x−y) ≡
0 (mod n). This means n | a(x − y). But since a and n are co-primes, all the
prime factors of n must be prime factors of (x − y) (fundamental theorem of
arithmetic). Therefore, n|(x− y) which is a contradiction since x− y < n. This
proves that ax is congruent to different values for different x’s. Since x can take

n different values, we must have n different values for ax, one of them (and the
only) will be 1.

While the first proof is a constructive proof, i.e. it gives a way to find a−1

using the Euclidean algorithm, the second proof is existential, i.e. it only proves
the existence and uniqueness of a−1 without providing means of obtaining it.

Example: Find 1/13 mod 21 (note: 13 and 21 are co-primes). Here’s a run
of the Euclidean algorithm:

a 21 13 8 5 3 2 1 0
x 1 0 1 -1 2 -3 5 -13
y 0 1 -1 2 -3 5 -8 21

Therefore, 21(5)-13(8)=1. So 1/13 ≡ −8 (mod 21), which is 13. Another way
is to rewrite the above combination as 13(8+5)-21(12-5)=13(13)-21(8), which
yields the answer 13.

Another example: Find 1/2 mod 234527 (note: 234527 is prime). Here’s a
run of the Euclidean algorithm:

a 234527 2 1 0
x 1 0 1 -2
y 0 1 -117263 234527

Therefore, 234527(1)-2(117263)=2(234527-117263)-234527(2-1)=1. So 1/2 ≡
117264 (mod 234527).

10 The Chinese remainder theorem

Assume we have equations of the form

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk)

where the ni’s are pairwise co-prime. Then x has a solution, and all solutions
are congruent modulo n = n1n2 . . . nk.

Let ei = sn/ni, where rni + s(n/ni) = 1 (extended Euclidean algorithm).
Thus

ei ≡ 1 (mod ni)

ei ≡ 0 (mod nj), i 6= j

It is easy to see that x =
∑k

i=1 eiai satisfies x ≡ ai (mod ni) for every i =
1 . . . k. Moreover, if x and y are solutions, then x − y ≡ 0 (mod ni) for every
i = 1 . . . k. Since ni’s are pairwise co-primes, it follows that x − y ≡ 0 (mod n)
(why?)

11 Fermat’s little theorem and primality testing

Let p be prime. Fermat’s little theorem is the following:

p |6 a ⇒ ap−1 ≡ 1 (mod p)

First note that a and p are co-primes (p is prime and p |6 a). As we have seen
before ax for x = 0 . . . p − 1 must have different values modulo p. Therefore,
those values must be 0, 1, 2, . . . , p − 1 permuted (0 when x = 0). So,

a × 2a × 3a × . . . × (p − 1)a ≡ 1 × 2 × 3 × . . . × (p − 1) (mod p)

(p − 1)!ap−1 ≡ (p − 1)! (mod p)

p | (p − 1)!ap−1 − (p − 1)!

p | (p − 1)!(ap−1 − 1)

Since p divides the above product, it must divide one of the factors. But p can-
not divide any integer < p; therefore, p | ap−1 − 1 and this proves the theorem.

Another way to prove Fermat’s little theorem is to prove that p | a(ap−1−1)
for any a; this will give the above result when p |6 a because p will have to divide
ap−1−1. Since there is now no restriction on a, we can now proceed by induction.
a = 1 provides the base case and assume that for a > 1, p | (a − 1)p − (a − 1).
Then

ap − a = [1 + (a − 1)]p − (a − 1) − 1

Using the binomial theorem, this is

(
p
0

)

+

(
p
1

)

(a−1)+ . . .+

(
p

p − 1

)

(a−1)p−1+

(
p
p

)

(a−1)p−(a−1)−1

=

(
p
1

)

(a − 1) + . . . +

(
p

p − 1

)

(a − 1)p−1 + [(a − 1)p − (a − 1)]

Since p |
(

p
k

)

when 0 < k < p (you were asked to prove this earlier), then p

divides every term in the above expression. Done.

Fermat’s little theorem can be strengthened in the following way:

p is prime ⇔ ap−1 ≡ 1 (mod p) for all 1 ≤ a < p

Since when a < p, p |6 a, the first direction is trivial from the previous version
of the theorem. For the second direction, I will use the contrapositive to prove
that if p is composite, then there exists a < p such that ap−1 6≡ 1 (mod p).
If p is composite, then p = ab where a < p and p and a must share a prime
factor (why?), say q (could be a itself). Then q | a ⇒ q | ap−1 ⇒ q |6 ap−1 − 1.
This means p |6 ap−1 − 1; otherwise, q would because q | p. Therefore, ap−1 6≡
1 (mod p).

Fermat’s little theorem can be used to test whether a number is prime or
not. Of course the brute force algorithm of checking if some number a < n
divides n is highly inefficient (one has to consider all numbers less than

√
n in

the worst case). But consider the following algorithm:

//to check if n is prime

repeat k times

pick a random a in {1,...,n-1}

if a^(n-1) mod n is not 1

return composite

return prime

Fermat’s little theorem tells us that if n is composite, there must be an a < n
that will fail the Fermat test. We repeat k times with the hope to find it, and
if we don’t we declare n as prime. Therefore, if n is prime we have nothing to
worry about, but if n is composite, are we going to be lucky in finding that a?
Assume an a < n exists such that gcd(a, n) = 1 and an−1 6≡ 1 (mod n). For
every b such that bn−1 ≡ 1 (mod n), we have

(ab)n−1 ≡ an−1bn−1 ≡ an−1 6≡ 1 (mod n)

And since a and n are co-primes, a has a multiplicative inverse modulo n, then
ab ≡ ac (mod n) ⇒ b = c (simply multiply by a−1 on both sides). Therefore,
every b < n that passes the Fermat test is associated with a unique integer
ab mod n that fails it. This means at least half of the integers will fail the
test. The probability of not finding one is, therefore, at most 1/2k which is tiny
if k = 100.

But what if n is composite and every a such that gcd(a, n) = 1 passes the
Fermat test? Such n is called a Charmichael number. Charmichael numbers are
rare, the smallest is 561 = 3× 11× 17. The Fermat test above can be modified
to handle Charmichael numbers, e.g. the Miller-Rabin algorithm, but this is
beyond the scope of the course.

One final note is that for the algorithm to be efficient, an−1 is always com-
puted modulo n (so numbers are always less than n) and using a technique
called repeated squaring (so no more than O(log n) multiplications are needed).
Repeated squaring relies on the fact that ab = (ab/2)2.

ab mod n = f(a, b, n) =







1 b = 0
f2(a, b/2, n) mod n b even
af(a, b − 1, n) mod n b odd

Here’s an example for a = 2 and n = 30 (so we need to compute 229 mod
30):

b 29 28 14 7 6 3 2 1 0
odd even even odd even odd even odd
×a ()2 ()2 ×a ()2 ×a ()2 ×a

ab 536870912 268435456 16384 128 64 8 4 2 1
ab mod n 2 16 4 8 4 8 4 2 1

12 Cryptography

Let n be prime and choose e such that gcd(e, n − 1) = 1 (e and n − 1 are
co-primes). Declare (e, n) as public information and an encoding scheme that
encodes x < n as follows:

y = xe mod n

Given y, it is generally hard to obtain x. However, since e and n − 1 are
co-primes, there exists a d such that

ed ≡ 1 (mod n − 1)

Now

yd ≡ (xe)d = xed = xk(n−1)+1 = xxk(n−1) = x(xn−1)k ≡ x (mod n)

The congruence follows from Fermat’s little theorem because n is prime and
n |6 x (x < n), hence xn−1 ≡ 1 (mod n). Since x < n, we can decode y back into
x

x = yd mod n

This is the basic idea behind public/private key encryption/decryption,
where (e, n) is the public key used to encode, and (d, n) is the private key
required to decode. But it is extremely easy to obtain d using the Euclidean al-
gorithm once (e, n) is known; it is simply the multiplicative inverse of e modulo
n − 1. We now modify the algorithm slightly to make it almost impossible to
obtain d from (e, n).

• pick two large primes p and q, and let n = pq

• pick e such that e and (p − 1)(q − 1) are co-primes

• (e, n) is public

• d is such that ed ≡ 1 (mod (p − 1)(q − 1))

• (d, n) is private

• encode x < n: y = xe mod n

• decode x = yd mod n

Since it is generally hard to factor numbers into primes, it is almost impossi-
ble to obtain p and q. This makes it hard to compute d. Now let’s show that the
decoding still works. Observe that y ≡ xe (mod p) (because y = xe mod pq).

yd ≡ (xe)d = xed = xk(p−1)(q−1)+1 = xxk(p−1)(q−1) = x(xp−1)k(q−1)

If p | x, then x ≡ 0 (mod p). This means yd ≡ 0 ≡ x (mod p). If p |6 x,
then xp−1 ≡ 1 (mod p) by Fermat’s little theorem, hence yd ≡ x (mod p).
Therefore,

yd ≡ x (mod p)

and similarly,
yd ≡ x (mod q)

This means (yd − x) is a multiple of p and q, thus a multiple of pq (uniqueness
of prime factorization). Therefore, yd ≡ x (mod pq), i.e.

yd ≡ x (mod n)

and since x < n,
x = yd mod n

13 Breaking encryption by Chinese remainder-
ing

Let’s say k people share the same value for e (e.g. 3) but they have different
p’s and q′s, thus different n’s. Now if a message x is encrypted using each one’s
public key (e, ni) and broadcast to everyone, we have the following system of
equations:

xe ≡ a1 (mod n1)

...

xe ≡ ak (mod nk)

where a1, . . . , ak are the encrypted transmissions.
Since the p’s and q’s are different, all n’s are pairwise co-prime. By the

Chinese remainder theorem, we can solve for xe mod n, where n = n1n2 . . . nk.
But if k ≥ e, then we know xe ≤ n1n2 . . . nk since x < ni for every i = 1 . . . k.
Therefore, xe < n we can determine xe exactly and hence x. This is why a
small value of e is not a good thing!

