
Discrete Mathematics

Graphs

Saad Mneimneh

1 Vertices, edges, and connectivity

In this section, I will introduce the preliminary language of graphs. A graph
G = (V, E) consists of a set of vertices V and a set of edges E, where an edge
is an unordered pair of vertices (although we could extend the definition to
ordered to allow for directed graphs). A graph can be visually represented by
making vertices points (or small circles), with some pairs (not necessarily all
pairs) connected by edges. It does not matter whether these edges are straight
or curvy; all that is important is which pairs of vertices they connect.

A

B

C

E

D

V = {A,B,C, D,E}
E = {(A,B), (A,C), (A,D), (A,E), (B, C), (E, C)}

The above definition restricts our focus to simple graphs where we have no
loops, i.e. no edges of the form (a, a), and no parallel edges, i.e. E is a set
and not a multi-set. If E is a multi-set, where (u, v) can appear multiple times,
we call the graph a multigraph. If the graph is directed, then (u, v) and (v, u)
may both appear in E; in this case, we interpret all edges as directional edges
(i.e. ordered pairs of vertices). But we will mainly consider simple undirected
graphs.

We have previously seen the definition of a degree of a vertex, and related
the sum of the degrees to the number of edges by the well-known Handshake
Lemma. We also established simple results such as Euler formula for planar
graphs and that the number of vertices with odd degree must be even for any
graph. We now define paths and walks. A path consists of a sequence of

n distinct vertices v1, v2, . . . , vn (except possibly for v1 and vn which can be
equal), such that (vi, vi+1) ∈ E. We say that there is a path from v1 to vn.
If v1 = vn, the path is called a cycle. If some vertex repeats in the middle of
the sequence, the sequence is called a walk (instead of a path) or a closed walk
(instead of a cycle). In the above picture, A, B,C is a path; A,B, C,A is a
cycle; A,B, C, A,E, C is a walk; and A,B, C, A,E, C,A is a closed walk.

If we let the relation u Ã v to mean there is a path from u to v, then we can
show that Ã is an equivalence relation. It is reflexive because u Ã u (the empty
path). It is symmetric because u Ã v ⇔ v Ã u (simply reverse the path). It
is also transitive but this is a bit tricky to show. If u Ã v and v Ã w, then
there is a walk from u to w. We say a walk because we cannot guarantee that
the path from u to v and that from v to w do not share vertices (other than v
that is). However, we can still construct a path from u to w (every walk can be
converted to a path). Assume our walk looks like the following:

u Ã a Ã v Ã a Ã w

Then let a be the first such vertex encountered on the walk from u to w. Now
construct this following path:

u Ã a Ã w

Why is the above a path? If some vertex repeats, it must occur before a. This
contradicts our choice of a. We conclude that u Ã w and that Ã is transitive.

The connected components of a graph are the equivalence classes of Ã.
Therefore, there is a path between every pair of vertices of a connected compo-
nent. By the properties of equivalence classes, the connected components of a
graph G = (V, E) are disjoint and their union is V . A graph is connected if it
has one equivalence class for Ã (intuitively, there is a path between every pair
of vertices).

If we have a graph G, then we can obtain a graph H by deleting some edges
and/or vertices (if we delete a vertex we delete all the edges touching it of
course). We say that H is a subgraph of G. If H is a connected component of
G, then every subgraph of G that contains H is not connected (why?).

2 Trees

A tree is a connected graph that has no cycles. Some examples of trees are shown
below. While we have used the connectedness and the cycle free properties to
define a tree, a tree can be defined in many equivalent ways.

• (1) connected and cycle free

• (2) minimally connected: connected but removing any edges disconnects
it

• (3) maximally cycle free: cycle free but adding any edge creates a cycle

We can further characterize the above minimal/maximal properties:

G = (V, E) is a tree ⇔ G is connected and |E| = |V | − 1

G = (V,E) is a tree ⇔ G is cycle free and |E| = |V | − 1

by showing that every tree with n vertices must have n − 1 edges. We first
show that every tree with at least two vertices must have a vertex with degree
1 (actually the following proof can be extended to prove the existence of two
vertices with degree 1): start at any vertex and follow a path arbitrarily (there
must be at least one edge). Eventually, you will have to stop because you cannot
cycle. The vertex where you stop has degree 1 (to find another one, follow an
arbitrary path starting from this vertex).

We now proceed by induction. Our base case is a tree with one vertex and,
therefore, zero edges. Now for every n ≥ 2, assume the property holds for a tree
with n−1 vertices, and let us show that it remains true for a tree with n vertices.
Given a tree with n ≥ 2 vertices, there must be a vertex of degree 1. Removing
this vertex with the edge connecting it produces a tree with n− 1 vertices. By
the inductive hypothesis, this tree must have n−2 edges. Therefore, our original
tree has n− 1 edges. Done.

3 Counting trees

How many trees are there on n vertices? To answer this question, we have to
clarify when we consider two trees to be different. Consider the following two
trees. Are they different or the same? There are two possibilities:

1

2 3

5

4

1

2 3

5

4

1

2 3

5

4

1

2 3

5

4

• labeled trees: If the trees are labeled, i.e. the vertices of the tree are
labeled 1, 2, . . . , n, then two trees are the same if the have the same set
of edges. The two above trees are not the same; for instance edge (1, 2)
exists in the first but not in the second.

• unlabeled trees: Two trees are the same if there is a one-to-one correspon-
dence between their vertices such that an edge exists in the first if and
only if the corresponding edge exists in the second. We call such trees
isomorphic. The two above trees are isomorphic, and here’s a one-to-one
correspondence {(1, 5), (2, 3), (3, 4), (4, 1), (5, 2)}.

It is easier to count labeled trees. So we will do that first, and we will then
compute lower and upper bounds on the number of unlabeled trees. Let Tn be
the number of labeled trees on n vertices. Let Si be the set of trees in which
vertex i has degree 1. Since every tree has a vertex of degree 1,

Tn = |S1 ∪ S2 ∪ . . . ∪ Sn|

We can use the inclusion-exclusion principle to compute the above quantity.
Observe that |Si| = (n − 1)Tn−1 because there are Tn−1 trees on vertices
1, . . . , i − 1, i + 1, . . . , n and vertex i can be added by connecting to any of
the remaining n− 1 vertices. Similarly, |Si ∪ Sj | = (n− 2)2Tn−2. This expres-
sion can be generalized to (n− k)kTn−k. Also note that |S1 ∩S2 ∩ . . .∩Sn| = 0
when n ≥ 3.

Tn =
(

n
1

)
(n− 1)Tn−1 −

(
n
2

)
(n− 2)2Tn−2 + . . . + (−1)n−2

(
n

n− 1

)
T1

=
n−1∑

k=1

(−1)k−1

(
n
k

)
(n− k)kTn−k =

n−1∑

k=1

(−1)n−k−1

(
n

n− k

)
kn−kTk

=
n−1∑

k=1

(−1)n−k−1

(
n
k

)
kn−kTk

Recall that S(m,n)n! =
∑n

k=0(−1)n−k

(
n
k

)
km. Therefore, if we let Tk =

kk−2, then we retrieve this familiar expression involving the Stirling number
S(m,n) with m = n− 2. For n ≥ 3,

Tn =
n−1∑

k=1

(−1)n−k−1

(
n
k

)
kn−2 = −

n∑

k=0

(−1)n−k

(
n
k

)
kn−2 + nn−2

= −S(n− 2, n)n! + nn−2 = 0 + nn−2

Therefore, if Tk = kk−2 for k = 3 . . . n− 1, then Tn = nn−2. This is a proof by
induction, and we only need a base case: T3 = 33−2 = 3, which is correct so we
are done. Since T1 = T2 = 1, Tn = nn−2 can be extended to n ≥ 1.

There is another way of obtaining the same result using a one-to-one cor-
respondence between labeled trees and what is known as a Prüfer code. The
Prüfer code is a string of length n− 2, where each character of the string is in
{1, 2, . . . , n}. The number of such strings is obviously nn−2. I will illustrate how

4 1 3

10

7

6

2

5

8 9

10

3

1 5 7

4 8 9 2 6

to generate the Prüfer code for a given tree, then prove the one-to-one corre-
spondence. First, root the tree at vertex n. It becomes a rooted tree as shown
below. Define a leaf to be a vertex of degree 1 other than the root (vertex n).
Define the parent of a vertex v to be the vertex that immediately precedes it on
the path from the root (vertex n) to v (conversely, v is the child). Then, start
with an empty Prüfer code and repeatedly pick the smallest numbered leaf, re-
move it from the tree, and add its parent to the Prüfer code. The process stops
when the tree has two vertices. Since every tree with at least two vertices has
at least two vertices of degree 1, a leaf can always be found even if the degree of
the root (vertex n) is ever 1. The Prüfer code is obtained after the removal of
n− 2 vertices; the (n− 1)st vertex must have the root as parent and hence it is
redundant to always end the Prüfer code with the number n. Here’s the Prüfer
code for the above example (vertices removed in order: 2, 4, 1, 6, 7, 8, 9, 5):

7 1 3 7 3 5 5 3

Now I will show how to reverse the process, i.e. given a Prüfer code, find
the exact same tree that generated it. This will prove the one-to-one correspon-
dence. All we have to do is guess the sequence of vertices that were removed.

Then we connect the vertices to their parents as given by the Prüfer code. Let
p[1..n−1] represent the Prüfer code appended with the number n, and v[1..n−2]
represent the n−2 vertices that were removed in order. We compute v[1..n−1]
as follows.

for i=1 to n-1
v[i]=smallest number not in

v[1..i-1] or p[i..n-1]
tree is graph ({1,...,n},{(v[1], p[1]),...,(v[n-1],p[n-1])})

Why does the above process succeed in retrieving the tree? When construct-
ing the Prüfer code, we repeatedly add the smallest numbered leaf. Therefore,
this leaf cannot be the parent of any future leaf. The above process repeatedly
finds the smallest leaf that is not a future parent and puts it in v[i]. How do
we prove that 1 ≤ v[i] ≤ n− 1? Observe that v[1..i− 1] and p[i..n− 1] contain
at most [(i − 1) − 1 + 1] + [(n − 1) − i + 1] = n − 1 numbers, one of them is
n = v[i− 1]. Therefore, they contain at most n− 2 numbers in {1, . . . , n− 1}.
So v[i] will find a number in {1, . . . , n− 1}.

The significance of the Prüfer code is that it gives an efficient way of storing
the tree (although in most applications of data structures a tree is not stored
in this way).

Finally, a proof based on counting in two different ways can also establish
that Tn = nn−2. The proof counts in two different ways the number of different
sequences of directed edges that can be added to an empty graph on n vertices to
form a rooted tree. One way to form such a sequence is to start with one of the
Tn possible unrooted trees, choose one of its n vertices as root, and choose one
of the (n−1)! possible sequences in which to add its n−1 edges. Therefore, the
total number of sequences that can be formed in this way is Tnn(n−1)! = Tnn!.

Another way to count these edge sequences is to consider an algorithm that
generates an edge sequence by adding the edges one by one to an empty graph
in n− 1 phases. If one has added k− 1 edges already, so that the graph formed
by these edges consists of n − k + 1 trees, there are n(n − k) choices for the
next edge to add in the kth phase: its starting vertex can be any one of the n
vertices of the graph, and its ending vertex can be any one of the n − k roots
other than the root of the tree containing the starting vertex. Therefore, by the
multiplication rule, the total number of choices is

n−1∏

k=1

n(n− k) = nn−1(n− 1)! = nn−2n!

Equating these two formulas for the number of edge sequences results in Tn =
nn−2. The advantage of this proof is that it can be adapted to answer questions
like: how many rooted trees on n vertices are there which have a specific set of
k edges? Try to answer this question using a similar counting argument (Hint:
the answer is nn−k−1). You might also consider the following questions: how
many unrooted trees on n vertices are there which have a specific edge, or a

specific pair of edges (Hint: it will make a difference whether the edges share
a vertex or not, the answers are 2nn−3 for one edge, 3nn−4 for two edges that
share a vertex, and 4nn−4 for two edges that don’t).

What about unlabeled trees. Every tree can be labeled in n! ways. But
different labelings may produce the same tree (e.g. a star tree). Therefore, if
we let Tn be the number of labeled trees, then

Unn! ≥ Tn = nn−2

Un ≥ nn−2

n!
Consider the tree rooted at some vertex v. Start a walk at v that visits all

the vertices and comes back to v. This walk traverses every edge twice: once
in the direction parent to child, and once in the direction child to parent. If
we encode these directions by 0 and 1 respectively, we obtain a binary string of
length 2(n − 1). But not every binary string of length 2(n − 1) defines a walk
on a tree.

0000011011100100101111

Therefore,
Un ≤ 22(n−1) = 4n−1

and we conclude that
nn−2

n!
≤ Un ≤ 4n−1

4 Finding the best tree

Consider a graph G = (V, E) with a function w : E → R that assigns a weight
for every edge in E. We call this a weighted graph. Let’s say we would like to
find the smallest subgraph of G that connects all the vertices. Obviously, such
a subgraph cannot contain cycles. So it must be a tree by definition. But which
tree? It is often desirable to find the tree with the smallest total weight, i.e. a
tree that minimizes the sum of the weights of its edges. Since the number of
labeled trees on n vertices is nn−2, an algorithm that explores all trees to pick
the best one is very inefficient.

The problem just described above is known as the minimum spanning tree
(MST). As it turns out, there are efficient ways to find an MST. Here’s one:

sort the edges by weight from smallest to largest. Start with an empty tree,
and repeatedly pick the smallest edge and add it to the tree if it does not create
a cycle (alternatively, one could repeatedly delete from the graph the largest
edge that does not disconnect the graph). We stop when we have added |V | − 1
edges. This is a greedy algorithm in the sense that we make what seems to be
the best choice (smallest weighted edge) at the moment. The following figure
shows an example run of this algorithm where the edges in bold end up being in
the tree (see if you can reproduce this tree by manually running the algorithm).

4

8

1 2

78

7
11

6

2

4 14

9

10

We have seen before that sorting will require O(|E| log |E|) time. In addition,
checking for cycles can be done in a total of O(|V | log V) time but the analysis
will not be covered here. Since |E| is O(|V |2), the total running time for the
greedy algorithm is

O(|E| log |V |2 + |V | log |V |) = O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)

Greedy algorithms, despite being efficient, do not always guarantee the op-
timal. Consider for example the traveling salesman problem.

2

1000

5

4

1
3

A B

CD

The goal is to visit every vertex exactly once and return to the starting vertex
in the cheapest way. Technically, we need a minimum weight Hamiltonian cycle
(a cycle that goes through every vertex exactly once), i.e. a Hamiltonian cycle
that minimizes the sum of the weights of its edges. A greedy algorithm similar
to the above can be envisioned. For instance, we can examine edges in order of
their weights and add an edge if it is not the third edge to touch a vertex and
if it does not create a cycle, unless the cycle contains all vertices. On the above
graph, this greedy algorithm will produce the cycle ABCDA with total weight
1008. A much better cycle exists: ACBDA has weight 13. We will revisit the
traveling salesman problem. For now, let’s prove that the greedy algorithm for
MST works.

Assume that the greedy algorithm makes a mistake for the first time by
adding edge e = (u, v). Let T ′ be a minimum spanning tree that contains all
edges in T prior to adding e (T ′ exists by the choice of e). In T ′, there must
be a path from u to v, and on that path, there must be an edge e′ that is not
in T (otherwise, T would contain a cycle formed by the path v Ã u and edge
e = (u, v)). If w(e′) < w(e), then the greedy algorithm must have examined
e′ before e. But since it decided not to include e′ in T , then adding e′ would
have created a cycle. But all edges in T up to that point (including e′) are also
in T ′, so T ′ contains a cycle, a contradiction. Therefore, w(e′) ≥ w(e), and
by replacing e′ by e in T ′ we obtain a minimum spanning that does contain e,
contradicting that the greedy algorithm made a mistake.

5 The traveling salesman

The traveling salesman is a very hard problem, and no efficient algorithm is
known to exists that solves it optimally. We are going to consider a special
version of the traveling salesman problem that satisfies the triangular inequality.
For every three vertices i, j, and k:

w(i, j) ≤ w(i, k) + w(k, j)

In this case, we can find a Hamiltonian cycle that is at most twice the weight
of the optimal cycle. Here’s how:

1. Find a minimum spanning tree (let’s denote its weight by MST)

2. Construct a closed walk that traverses the entire tree (as we did before, it
goes through every edge twice)

3. Transform the closed walk into a cycle by applying shortcuts (illustrated
below in bold)

If we denote the weight of the minimum weight Hamiltonian cycle by OPT ,
then MST ≤ OPT because breaking the Hamiltonian cycle by removing any
edge gives a tree. Moreover, since the triangular inequality holds, applying
shortcuts can only decrease the weight and, therefore, the weight of the cycle is
at most that of the closed walk, which is 2MST ≤ 2OPT .

6 Hamiltonian cycles and Eulerian walks

In the traveling salesman problem, we assumed that a Hamiltonian cycle exists
and wanted to find the one with minimum weight. In general, however, deciding
whether a graph has a Hamiltonian cycle is very hard. Such a graph is called
Hamiltonian.

An example of a Hamiltonian graph is the graph obtained from the config-
urations of the towers of Hanoi. A tower of Hanoi with n discs has 3n possible
configurations of discs (why?). If we make each configuration a vertex in a
graph, and connect two vertices if their corresponding configurations are sep-
arated by one move, then we obtain a Hamiltonian graph. This means that
we can go through all 3n configurations and come back to the starting point in
exactly 3n moves, i.e. in an optimal way. What does the graph look like? It
turns out there is a nice connection to the Pascal triangle. Below is the tower
of Hanoi graph for n = 3 (with 33 = 27 vertices), it is obtained by connecting
the odd neighboring entries in the Pascal triangle. Can you find a Hamiltonian
cycle? The three corners of the outer triangle correspond to all discs on peg 1,
all discs on peg 2, and all discs on peg 3. Can you find a path that corresponds
to an optimal solution (the length of the path must be 23 − 1 = 7)?

1

1

71

15

2135

1

31

11

1

13

5 1

1

1

1735

15

21

5

1

1

2

4 6 4

10 10

206 6

Surprisingly, if instead of a Hamiltonian cycle, we seek a cycle that goes
through every edge exactly once, called Eulerian cycle, then finding whether
such a cycle exists or not becomes easy. This was inspired by the bridges of
Königsberg (now Kaliningrad). Is it possible to take a walk (and maybe come
back to the starting point) that crosses every bridge exactly once?

The situation can be modeled as a multigraph (with possibly multiple edges
connecting a given pair of vertices). The question becomes whether the multi-
graph a Eulerian walk (the walk may or may not be closed).

We can make the following two observations:

• if a vertex v has odd degree, then every Eulerian walk must either start
or end at v.

• if a vertex v has even degree, then an Eulerian walk that starts at v must
end at v.

In fact, Euler proved the following: A connected multigraph has a closed
walk if and only if every vertex has even degree.

(⇒): If a closed walk exists, then each time a vertex v is visited by using some
edge (u, v), another edge (v, w) must be used to leave the vertex. Therefore, the
vertex must have an even number of edges touching it (that’s its degree).

(⇐): we prove this by constructing the Eulerian walk. We start at some
vertex u and follow edges arbitrarily using every edge at most once until we
are stuck and cannot leave some vertex v. It must be that u = v; otherwise, v
has odd degree (why?). So we have a closed walk that uses every edge at most
once. If we have used all the edges, then we are done and our walk is in deed
Eulerian. Otherwise, there must be some edge (w, q) that is not on the walk.
Actually, there must be such an edge where w has been visited already (because
the graph is connected). Starting from w, we repeat the same process to obtain
another walk and merge the two walks. We continue this way until we have
used all the edges, i.e. our walk is Eulerian.

We can use the above result to show that if a connected multigraph graph
has exactly two vertices u and v with odd degrees, then it has a non-closed
Eulerian walk. Simply connect u and v with an extra edge. Now all vertices
have even degrees. Construct a closed Eulerian walk then break it by removing
edge (u, v). What if we have more than two vertices with odd degree? Then a
Eulerian walk cannot exist (why?).

7 Graph coloring and planarity

A coloring of a graph G = (V,E) is an assignment of colors to all the vertices
in V such that if (u, v) ∈ E ⇒ u and v have different colors. The chromatic
number of a graph G, χ(G), is the smallest number of colors needed to color
the graph. Let ∆ be the largest degree of a vertex in G, then

χ(G) ≤ ∆ + 1

We prove this by induction. The base case is any |V | ≤ ∆ + 1, which
obviously does not require more than ∆ + 1 colors. For |V | > ∆ + 1, consider
a vertex v ∈ V and the subgraph H obtained by deleting v (and the edges
touching it) from G. Now H has |V | − 1 vertices and the largest degree in H
is still at most ∆. By the inductive hypothesis, H can be colored using ∆ + 1
colors. But since v has a degree of at most ∆, there must be a color among
these ∆+1 colors that can be used for v. This inductive proof can be converted
into a greedy algorithm for coloring G using at most ∆ + 1 colors.

A graph G = (V,E) is bipartite iff V can be partitioned into two (disjoint)
sets A and B such that

(u, v) ∈ E ⇒ (u ∈ A ∧ v ∈ B) ∨ (u ∈ B ∧ v ∈ A)

Another characterization of a bipartite graph is that it is a graph with no odd
length cycles. In fact, these two definitions are equivalent. It is obvious that a
bipartite graph cannot have odd length cycles. Let’s explore the other direction.
Choose an arbitrary vertex v and label it EVEN. Then label all its neighbors
ODD (those vertices that are connected to v by an edge). Repeatedly label
neighbors of vertices in this way by alternating EVEN and ODD. The process
ends when all vertices are labeled (this is guaranteed if the graph is connected;
otherwise, perform the process on each connected component). During this
process, a vertex might have been labeled more than once, but any re-labeling
must be consistent with an existing label since, otherwise, we discover an odd
length cycle (because the is at an EVEN distance from v and at an ODD distance
from v). Now place all vertices labeled EVEN in A, and all vertices labeled ODD
in B. This proves that the graph is bipartite. In fact, A and B can be thought
of as colors. So we have the following results:

G is bipartite ⇔ χ(G) = 2

Coloring has been a famous topic with planar graphs. Recall that a planar
graph is a graph which can be drawn in the plane with no edges crossing (again
edges need not be straight lines). The famous four color theorem establishes
that every planar graph is 4-colorable. We can prove a more modest result:
every planar graph can be colored with 6 colors (and with a little more effort
we can prove that 5 colors are enough). Recall Euler’s formula (where v, e, and
e refer to vertices, edges, and faces respectively):

v − e + f = 2

If we define the degree of a face to be the number of edges encountered on a
closed walk around its boundary, then in the sum of degrees of faces every edge
is counted twice (it is on the border of two faces or within the same face). In an
analogous way to the Handshake lemma, the sum of degrees of faces is equal to
2e. Since every face must have degree at least three (exclude graphs with less
than 3 vertices), then

3f ≤ 2e

e = v + f − 2 ≤ v +
2
3
e− 2 ⇒ e ≤ 3v − 6

But the sum of degrees of vertices is 2e (Handshake lemma), so the average
vertex degree is

2e

v
≤ 6v − 12

v
< 6

Therefore, there must be a vertex with degree at most 5.
Now if all vertices have degree at most 5, we can color the graph using 6 colors

as illustrated by the first result of this section. But since every subgraph of a
planar graph obtained by deleting a vertex must be planar, every such subgraph
must have a vertex with degree at most 5. Therefore, the same inductive proof
can be adapted to show that 6 colors are enough. In fact, the first result can
be generalized as follows: If every subgraph of G has a vertex of degree at most
∆, then χ(G) ≤ ∆ + 1.

Euler’s formula is very useful. It can be used to show, for instance, that
the number of planar graphs in which every vertex has degree d and every face
has degree b is exactly 5. These are the solutions corresponding to (d, b): (3,3),
(3,4), (4,3), (3,5), and (5,3). The system of equations is:

v − e + f = 2

dv = 2e

bf = 2e

Euler’s formula can also be used to show that the complete bipartite graph
with 3 vertices in each partition, called K3,3, and the complete graph on 5 ver-
tices, called K5 are both non-planar. Here are the two corresponding systems
of equations, which are non-solvable:

K3,3

v − e + f = 2
4f ≤ 2e (every face has degree at least 4)
v = 6
e = 9

K5

v − e + f = 2
3f ≤ 2e (every face has degree at least 3)
v = 5
e = 10

In fact, Kuratowski proved that a graph is planar if and only if it does not
contain a subdivision of K3,3 or K5. What is a subdivision? Inserting a new
vertex into an existing edge of a graph is called subdividing the edge, and one
ore more subdivisions of edges creates a subdivision of the original graph.

Finally, I present a nice connection between Hamiltonian graphs (those which
have a Hamiltonian cycle), bipartite graphs (2-colorable), and planar graphs.
Given a graph G with a Hamiltonian cycle H,

• Draw G in the plane with H on the outside, i.e. with H as the boundary
of the “outer face”.

• List the edges of G not in H, e1, . . . , en.

• Form a new graph K in which the vertices are labeled e1, . . . , en, and
where the vertices labeled ei, ej are connected by an edge if and only if ei

and ej cross in the drawing of G, i.e. they cannot both be drawn inside
H or outside H.

Then G is planar if and only iff K is bipartite. The proof is easy: If G is planar,
then some of e1, . . . , en can be drawn inside H and some outside H resulting
in a bipartite graph K. Conversely, if K is bipartite, say with the two sets of
vertices A and B, then we can draw the edges in A inside H and the edges in
B outside H to obtain a planar graph G.

Since both K3,3 and K5 are Hamiltonian, this result can be used to prove
that neither of the two is a planar graph (try it).

