CSCI 120 Introduction to Computation
On bitmaps, colors, graphs, and more (draft)

Saad Mneimneh
Visiting Professor
Hunter College of CUNY

1 A bitmap

Consider the following 4x3 pixel image, which can be created using the Paint
software in Microsoft Windows.

Figure 1: A 4x3 pixel image

When saved as a bitmap, the image is encoded in binary where each individ-
ual pixel is represented by three bytes (24 bits). This representation depends
on the color of the pixel, and uses the RGB color scheme. In RGB, each color
is obtained as a mixture of three colors with different intensities: Red, Green,
and Blue. Therefore, each of the three bytes defines the intensity of the corre-
sponding color, a value that will range from 0 to 255 (because 256 patterns are
possible with 8 bits). The figure below shows how three color light beams mix
on a black surface.

Figure 2: RGB color

Because three light beams with different intensities can produce a range of
colors on a black surface (no color), RGB is called additive. In contrast, printers
use a subtractive color scheme in which the ink drops subtract colors from white



(the paper). An example of a subtractive color scheme is CYMK (Cyan, Yellow,
Magenta, and Black). For instance, Cyan subtracts the red from white so we
see cyan (see RGB above). Black is used for economical reasons (colored ink
is more expensive), and because it produces better quality black then the one
obtained by combining Cyan, Yellow, and Magenta.

Viewing the binary file produced for the above 4x3 image requires a special
file reader because most of the software applications that read files assume that
files contain text and, therefore, convert bytes to characters using ASCII. A good
file reader for viewing binary is fb, which can be downloaded from the course
website. If we save the image as patch.bmp, then typing fb -b patch.bmp at
the command prompt will display the following;:

00:
08:
16:
24:
32:
40:
48:
56:
64:
72:
80:
88:

0
01000010
00000000
00000000
00000000
00000000
00000000
00000000
11111111
00000000
00000000
00000000
11111111

1
01001101
00000000
00000000
00000000
00000000
00000000
00000000
11111111
11111111
00000000
00000000
11111111

2
01011010
00110110
00000100
00000001
00100100
00000000
00000000
11111111
00000000
00000000
11111111

3
00000000
00000000
00000000
00000000
00000000
00000000
00000000
11111111
00000000
11111111
00000000

4
00000000
00000000
00000000
00011000
00000000
00000000
00000000
11111111
00000000
11111111
00000000

5
00000000
00000000
00000000
00000000
00000000
00000000
00000000
11111111
00000000
11111111
00000000

6
00000000
00101000
00000011
00000000
00000000
00000000
11111111
11111111
00000000
11111111
00000000

7
00000000
00000000
00000000
00000000
00000000
00000000
11111111
00000000
00000000
00000000
11111111

We can also choose to display the bytes in decimal by typing fb -d patch.bmp

instead:

00:
16:
32:
48:
64:
80:

0
066
000
000
000
000
000

1
o077
000
000
000
255
000

2
090
004
036
000
000
255

3
000
000
000
000
000
000

4
000
000
000
000
000
000

5
000
000
000
000
000
000

6
000
003
000
255
000
000

7
000
000
000
2565
000
255

8
000
000
000
255
000
255

9
000
000
000
255
000
255

10
054
001
000
255
000

11
000
000
000
255
255

12
000
024
000
255
255

13
000
000
000
255
255

14
040
000
000
255
255

15
000
000
000
000
000

Byte 18 and byte 22 represent the image size. Byte 28 identifies that each
pixel is represented by 24 bits (3 bytes, one for each intensity of RGB). We can
also identify the following triplets of bytes (right to left bottom up):

255
255
255
255

000
000
000
255

000
000
000
255

255
255
255
000

000
000
000
255

000
255
000
255

255:
2565:
255:
000:

000:
000:
000:
255:

255:
000:
000:
255:

white
white
white
red

black
black
black
white

blue

green
black
white



2 A map

Consider the following map (also downloadable as a bitmap from the course
website).

Figure 3: A map

Using the filling tool in Paint, we can color the different regions of the above
map (states of USA in this case). To do this, first select a color. Then, by
simply clicking the mouse while in the desired region, the entire region will be
colored with our choice.

Here’s an example:

Figure 4: A colored map

Note that when saving the image is JPG, we reduce the quality (but also
reduce the file size from about 433 KB to 27 KB).



Figure 5: Saved as JPG

How does the filling tool know when to stop. In other words, how does it
detect boundaries? The answers lies in the fact that the Paint software works
with a graph representation of the image. Let’s look at what a graph is.

3 Graphs

A graph is an abstract notion and consists of a set of nodes and a set of edges
connecting pairs of nodes. The nodes are often represented by circles, and edges
are often represented by lines (not necessarily straight). Here’s an example:

Figure 6: Example graph with 6 nodes and 5 edges. The graph can
also be represented by simply stating the set of nodes (also called vertices)
V={1, 2, 3, 4, 5, 6} and the set of edges: E = {(1,2),(1,3),(1,4), (3,6),(4,5)}.

The neighbors of a node in a graph are the nodes that are connected to it
by edges. In the above example, node 1 has 3 neighboros {2, 3,4}, and node 3
has 2 neighbors {1,6}, etc... A graph can be used to model any system where
relationship between entities must be expressed. For instance, a graph can
model cities where nodes represent places and edges represent roads connecting
those places. Another example would be a social network, where nodes represent
people and edges represent friendships among them.

The Paint software uses a graph to model the image. In this case, nodes
represent pixels, and two nodes are connected by an edge if the corresponding
pixels they represent are adjacent. Here’s how the bitmap of Section 1 can be
modeled as a graph.



D

o) —(0—w

Figure 7: Graph model of bitmap. The graph contains 12 nodes representing
the 12 pixels. Each node has also a color attribute corresponding to the color
of the pixel it represents. The graph contains 17 edges representing adjacent
pixels.

Using the graph model, the filling tool detect boundaries and performs the
filling of regions according to the following algorithm (assume we fill with red):

e start at the node (pixel) clicked, let its color be ¢
e mark the node wisited

e add it to a queue

e repeat

— take a node from the queue, color it red
— for each of its neighbors, if not wvisited and has color ¢

* mark it visited
% add it to the queue

e until the queue is empty

Let’s look at an example. Say we want to recolor a region red, and we click
on pixel (node) 6. Then color ¢ is black.

neighbors of 6: 2, 5, 7, 10, only 5 and 7 are not visited and black
neighbors of 5: 1, 6, 9, none is not visited and black
neighbors of 7: 3, 6, 8, 11, only 3 is not visited and black

neighbors of 3: 2, 4, 7, none is not visited and black

| EL

queue is empty, stop

Figure 8: Filling region of pixel 6. Nodes 6, 5, 7, and 3 are colored red.



4 Planar graphs and the four color theorem

A graph is called planar if its edges can be drawn in the plane (on paper) without
crossing (recall edges can be curves not necessarily straight lines). For instance,
the graph in Figure 6 is planar because edge (3,6) can go around node 5 from
below. Alternatively, node 6 may be moved below node 5 and, therefore, edge
(3,6) will not cross edge (4,5). The following two graphs are also planar, try to
redraw them to avoid all edge crossings.

N
Figure 9: Two planar graphs

An interesting question is the following: If edges can curve and we can redraw
graphs, aren’t all graphs planar? Of course, the answer is no; otherwise, the
definition is useless. Here’s an example known as the utility problem: Consider
three houses and three utilities: electricity, water, and gaz. We would like to
connect every house to all three utilities, as shown below. Try to do it while
avoiding all edge crossings (hint: you can’t).

Figure 10: The utility problem (6 nodes, 9 edges). This graph is known as K3 3.

So why are planar graphs important? This dates back to 1852 when Francis
Guthrie in England asked if it is possible to color maps using four colors only in
such a way that neighboring countries (or states) get different colors. But how
is that relevant to graphs? A map can be represented by a planar graph. Each
country (or state) is represented by a node, and two nodes are connected by an
edge if their corresponding countries (or states) share a boundary. The result
is a planar graph.



Figure 11: Planar graph representation of map

Note that this planar representation is not possible if a country is geograph-
ically disconnected, which could happen if, for instance, a country like USA
occupies another country like Iraq, so both countries become one. Here’s a
fictitious example:

Figure 12: A map with five countries. A disconnected country is shown in gray.
Each country is a neighbor of the other four. The resulting graph is not planar
(check). This graph is known as K.

Therefore, we only need to color the nodes of a planar graph in such a way
that neighboring nodes get different colors. For decades, the problem of coloring
a planar graph using only four colors was kicked around by mathematicians as
a simple but elusive puzzle, until the difficulties in obtaining a proof became
apparent in the 1870s. An erroneous proof was published by Kempe in 1879,
and the problem was regarded as solved for a good decade before the error was
discovered. After the collapse of Kempe’s proof, for more than a century many
mathematicians tried in vain to solve this question. In 1976, Appel and Haken
gave a proof, but their proof used computers heavily to check an enormous
number of cases (more than 1000 hours of CPU time). Even today, the use of
computers could not be eliminated from the proof, and we still don’t have a
“pure” mathematical proof of what is now known as the four color theorem.



The four color theorem: A planar graph can be colored with only
four colors such that neighboring nodes get different colors (thanks to
mathematicians and computers).

5 Trees and binary search

Starting at a given node v in a graph, if it is possible to visit other nodes by
traveling along edges at most once per edge, and come back to node v, the graph
is said to have a cycle. A graph with no cycles is called a tree (for a reason that
will become apparent shortly). For instance, the graph in Figure 6 is a tree
because it has no cycles. The following figure shows a graph with a cycle and a
graph with no cycles (a tree).

Lo

Figure 13: The first graph has cycles, e.g. starting at node 1, we can visit node
2 by traveling along edge (1,2), then node 3 by traveling along edge (2,3), then
node 4 by traveling along edge (3,4), then back to node 1 by traveling along
edge (4,1). The first graph contains other cycles. Try to find a cycle that goes
through all the nodes. The second graph has no cycles, it is a tree.

A rooted tree is a tree with one node designated as the root. Mathematicians
and computer scientists draw rooted trees upside down like in the following figure

with parent/child relationship.

root

parent

\

leaf
(no children)

child

N

siblings

Figure 14: A rooted tree showing the root, parent/child relationship, siblings
relationship, and leaves.



A binary tree is a rooted tree in which every node has at most two children.
Binary trees are useful for searching. Consider the following problem: we are
given a list of numbers and we would like to search the list for a specific number
and report whether that number exists or not. Obviously, one algorithm is to
examine all numbers in the list one at a time, and stop whenever one of them is
equal to the number we are searching for. While this algorithm works, we have
to check the entire list in the worst case; for instance, when the given number
is not in the list. A better approach is to construct a binary tree representation
of the list as follows: Let the first number in the list be the root. Then insert
the rest of the numbers by starting at the root and either going left or right
depending on whether the number is smaller or larger, respectively. In other
words, each number is placed as a new leaf in a binary tree by comparing it to
intermediate nodes on the path from the root to that leaf. Here’s an example
for the list: 4721583 6.

Figure 15: A binary tree for the numbers 4 72 15 8 3 6.

Using the tree model above, searching for 5 would proceed in the following
way: starting at the root, we determine that 5 is larger than 4, so we go right,
then we determine that 5 is less than 7, so we go left, then we find 5. Searching
for 9 would proceed in the following way: starting at the root, we determine
that 9 is larger than 4, so we go right, then we determine that 9 is larger than 7,
so we go right, then we determine that 9 is larger than 8, but since 8 is a leaf (we
can’t go right), we know that 9 does not exist. This search algorithm is called
binary search and the tree constructed in this way is called a binary search tree.
Obviously, the number of times we have to check a number is bounded by the
height of the tree, which is usually much less than the length of the entire list.



