
CSCI 120 Introduction to Computation

Operating System (draft)

Saad Mneimneh

Visiting Professor

Hunter College of CUNY

1 Introduction

So far, we have studied computation from different perspectives, starting from
its abstract nature and the design of algorithms all the way to the physical is-
sues involving the electronic representation (bits) and the computer architecture
required to carry out the computation. We identified essential components of
such an architecture including the CPU, the control unit, the ALU, the regis-
ters, the instruction set, main memory, cache memory, the bus, I/O controllers,
I/O ports, input and output devices, and mass storage devices. We have also
experienced how to write small programs that perform useful operations using
the native instruction set, and we have seen some of the programming con-
structs that a high level programming language would offer to simplify the task
of programming, such as functions, loops, conditionals, recursion, etc...

Now we ask, what makes everything work together? Who is responsible for
coordinating the overall operation of a computer? The answer is the operating
system. The operating system is a software program that is loaded into main
memory when the computer first starts. This program provides means by which
a user can store and retrieve files, provides the interface by which a user can
request the execution of other programs, and provides the environment neces-
sary to execute these programs. Examples of operating systems are Windows,
MacOS, Unix, and Linux.

2 History of operating systems

In the 1940s and 1950s, computers were not very flexible or efficient. The
machines occupied entire rooms, and the program execution required significant
preparation of equipments, including the following:

• mounting and connecting magnetic tapes and mass storage devices

• placing punched cards to input the program

• setting switches depending on the program requirements

For this reason, the execution of each program, also called a job, was handled
as an isolated activity. Therefore, computers of that time performed only one job
at a time. All the tapes, punched cards, and printed results are then retrieved.

Because multiple users needed to share the machine, sign up sheets were
provided so that users can reserve the machine for blocks of time. However,



when allocated to a user, the machine was under the total control of that user
(no one else can do anything during that time).

In such a single user environment, the operating system started as an effort
to simplify program set up and hence ease the transition between users.

2.1 Batch processing

The first step was to separate the users from the equipments and to eliminate
the physical transfer of people in and out of the computer room. This was
achieved by hiring a computer operator to operate the machine. Users submit
their jobs to the operator with the required data and some direction about the
program requirements, then return for their results. The operator in turn loads
the programs into the machine’s mass storage device, where a program called
the operating system could read and execute them one at a time. This is called
batch processing. In batch processing, the jobs residing in mass storage wait
for executing in a queue. A queue is a structure in which objects are ordered
First In First Out FIFO (compare to stack, LIFO). That is, objects (in this case
jobs) are served in the order in which they are received.

execute

result
operator

FIFO queue

operating system

job

Figure 1: Batch processing

In practice, the queue is not necessarily FIFO. For instance, the queue may
be a priority queue. In a priority queue, each job has a priority. Therefore,
when a high priority job is submitted by the operator, it bumps few jobs behind
it and takes its place in the queue.

Each job was accompanied by some instructions explaining the steps needed
to prepare the machine to execute the job. These instructions were written
in a special language called Job Control Language JCL. The operating system
retrieves the job at the head of the queue, reads the JCL instructions, and prints
what needs to be set up on a printer. The operator reads the information from
the printer, makes the required set up to the machine, and then instructs the
operating system to start executing the job.

Funny observation: To illustrate the operation of the machine, we sometimes
use a tiny person that goes back and forth between different components, car-
rying bits, etc... This was really the case in the early days. A person used to
be inside the computer!

2.2 Interactive processing

One major drawback of batch processing (and the presence of an operator) is
that users have no interaction with their jobs once submitted to the operator.
While this may be acceptable in some applications (e.g. offline computation),



it is not acceptable when the user needs to interact with the program during
execution (e.g. word processing, computer game, ...). For instance, the user
might need to enter some information to guide the computation based on the
result obtained so far. Such need lead to the development of operating systems
that provide interactive processing (as opposed to batch processing).

With interactive processing, the operating system allow users to interact with
their programs through remote terminals (also called workstations, which is a
term still used today) that are connected to the computer by links (probably the
first form of computer networks). One of the problems of interactive processing
is that all users seek interactive service in real-time; hence the emergence of
the term real-time processing. If an interactive operating system had been
required to serve one user only, then providing timely response, would have been
not a problem. But computers in the 1960s were still expensive so each machine
had to serve several users. Therefore, providing timely response to multiple
users was a challenge. For instance, if one user is exclusively interacting with
the machine, all others users have to wait. This problem was solved with the
technique known as time sharing.

2.3 Real-time processing and time sharing

In light of the problem mentioned above, it is obvious that the operating system
cannot execute one job at a time; otherwise, only the user of that job will
receive real-time service. A solution to the problem of real-time processing was
to design the operating system to rotate various jobs in and out of execution.
The solution, called time-sharing, was to divide time into intervals. Then the
operating system restricts the execution of a job to only one interval at a time.
At the end of each interval, the current job is interrupted and set aside, and
another job resumes (or starts) execution during the next interval. Jobs are
rapidly shuffled in this way creating an illusion of several jobs being executed
simultaneously. Adequate performance was achieved in those days with 30 users
simultaneously, each working on a separate terminal connected to the central
computer. The following figure illustrates time-sharing for three jobs.

1 2 3 1 2 3

job 1

job 2

job 3

time

Figure 2: Time-sharing

With multi-user time-sharing operating systems, a computer installation was
configured as a large central computer connected to a number of workstations.
Commonly used programs were stored on the machine’s mass storage device,
and the operating system designed to execute these programs as requested by
workstations. The role of operator faded.



2.4 Today

Today time-sharing is still used in multi-user systems and provides adequate
performance for hundreds and even thousands of users, and also in single-user
systems (personal computer) where it is usually called multitasking. The oper-
ator is now simply the system administrator whose responsibility is to maintain
the machine, install programs, provide accounts to access the machine, etc...
Operating systems have grown from simple programs that retrieve and exe-
cute programs to complex systems that coordinate time-sharing and maintain
programs and data. With multiprocessor machines, operating systems perform
another form of multitasking by assigning different task to different processors.
The following issues have become major design issues in such operating systems:

• Load balancing: distributing tasks among processors

• scaling: braking a task into smaller independent tasks to ensure high level
of parallelism (running subtasks in parallel)

• cache coherence: making sure all processors have valid data in their cache
(since multiple processors are updating memory now)

3 Operating system and other software

How does the operating system fit among all other software applications? What
is part of the operating system and what is not? To understand this, we attempt
to classify software into categories. Although this categorization is not exact,
and in fact is sometimes vague, especially with the dynamic subject of software
applications and software development, it should provide us with a “big picture”.

We begin by dividing software into two broad categories: application soft-
ware and system software.

Application software consists of programs that perform tasks particular to
the machine utilization, i.e. these programs typically depend on the user. Ex-
amples of such programs include word processing, drawing tools, etc... For
instance, different users prefer different word processing applications. While
some people use Microsoft Office, others use Latex (The software producing
this document). Moreover, a machine used by an artist is likely to contain dif-
ferent application software from that used by an electrical engineer. Usually,
application software is installed by the user.

In contrast, system software consists of programs that perform tasks common
to the computer system in general. Obviously, the operating system is part of
the system software. System software is further divided into two categories:
utility software and the operating system software itself.

Utility software consists of programs that perform activities fundamental to
the computer system but not included in the operating system itself. These
are software units that either extend the operating system with capabilities or
customize it. Examples of utility software may include disk format or copy
programs, file compression programs, etc... This separation between utility
software and the operating systems allows customization more easily than if it
were part of the operating system. For instance, one could update the disk
copy utility to become more efficient, without having to change the core of the
operating system.

The distinction between utility software and application software is vague.
For instance, is word processing application or utility? From a user’s point of



view, the difference is whether it comes with the installation or not. Sometimes
an application becomes so fundamental and a standard used by everyone (for
instance, like a text editor, e.g. emacs under Unix), that it eventually becomes
part of the utility software.

software

application software system software

operating systemutility software

Figure 3: Software

4 The operating system

In this section, we study the main components of an operating system. As a
crude description, we divide the operating system into the shell and the kernel.
In order to perform actions requested by the user, the operating system must be
able to communicate with the user. The portion of operating system responsible
for this communication is called the shell. The rest is the kernel.

kernel

shell

useruser

user

user

Figure 4: Shell and Kernel

A shell can be text based (interaction with text commands) or a graphical
user interface GUI (pronounced Goo-ee). In a GUI, objects to be manipulated
such as files and programs are represented pictorially on the screen, e.g. icons.
The user issues commands by pointing to these icons using a mouse.

Although an operating system’s shell plays an important role in establishing
the machine’s functionality, it is merely an interface between the user and the
heart of the operating system. In fact, most operating systems allow the user to
change or choose a shell to customize the type of interaction desired. Example



shells: cshell, tcshell, and bourne shell in Unix. Windows itself is a shell, the
real operating system is MSDOS (Microsoft Disk Operating System).

GUI shells have an important component known as the window manager,
which allocates rectangular blocks of space on the screen, called windows, and
keeps track of which application is running in a particular window. When an
application needs to display something, it notifies the window manager which
displays the desired graphics in the window associated with the application.
Similarly, when a mouse on a window is clicked, the window manager notifies
the application and sends to it the mouse coordinates. A Unix based operating
system allows to customize or even choose among a number of window managers.
Each has its own look and feel.

application 1

application 2

application 3

window 1

window 2

window 3

window manager

application

window

communication through 
window manager

mouse event

notify with coordinates

redraw request

redraw

Figure 5: Window manager in GUI shell

The kernel is the heart of the operating system and contains components
that perform the very basic functions required by the computer. We have five
main components in the kernel:

• File manager

• Device drivers

• Memory manager

• Scheduler

• Dispatcher

4.1 File manager

The file manager coordinates the use of the machine’s mass storage devices. It
contains records of all files stored in mass storage including:

• where each file is physically located on disk

• which users are allowed to access a file

• which portions on disk are available

For convenience, most file managers allow files to be grouped in directories
or folders. This approach makes it easy for users to organize their data. For
instance, if you open Windows Explorer (which is the GUI interface of the



file manager), you can access c:\windows\system32\notepad.exe. This chain of
directories is known as path. Therefore, the path for the file notepad.exe is
c:\windows\system32. The file notepad.exe is the executable for the text editor
in Windows. The same concept of directories and paths apply in other operating
systems. For instance, in Unix, the file manager uses / instead of \.

The file manager is the one who grants access to files requested by other
modules. Once approved, the file is opened and a “file descriptor” is stored
in memory. Any further operations on the file (reading, writing, etc...) are
performed through the file descriptor.

descriptor 1

descriptor 2

descriptor 3

file 1

file 2

file 3

file manager

memory

disk

file

Figure 6: File manager and file descriptors

4.2 Device drivers

Device drivers are software units that communicate with the I/O controllers.
Basically, a device driver translates the user requests to the more technical
steps needed by the device I/O controller. Although initiated by the user, these
requests are typically issued by application software (or other components of the
operating system), such as a word processing application requesting to print.
Therefore, device drivers are important because they hide the complication of
talking directly to the device. For example, the word processing application need
only talk to the driver through a certain interface. If the printer is changed, or
the driver is updated, the word processing application need not change (other-
wise, it would be really inconvenient!).

Every device (such as printer, scanner, etc...) comes with its own device
driver. The driver may be part of the operating system; for instance, most HP
printers have drivers already installed in Windows.

4.3 Memory manager

The memory manager coordinates the use of the machine’s main memory. This
task may be trivial in an environment in which a computer is required to perform
only one task at a time. In such a case, the program performing the task is put
in a predetermined location in memory and the execution starts from there
(by setting the program counter accordingly). However, with multi-users and
multi-tasking, many programs and blocks of data must reside in memory. The
memory manager must:



• find and assign memory space for all these programs and data blocks

• ensure that the actions of each program are restricted to its space (other-
wise, a program may override data belonging to another program)

• keep track of available blocks of memory as different activities come and
go

The task of the memory manager is even more complicated when the total
amount of memory needed by all programs and data exceeds the amount of
memory available to the machine. In this case, the memory manager creates
illusion of additional memory space by rotating programs and data back and
forth between memory and disk. This technique is called paging. In paging,
programs and data are divided into small chunks called pages that are shuffled
back and forth between memory and disk. The additional memory thus obtained
is called virtual memory. You may have experienced times when Windows
becomes very slow and a messages pops up saying “Windows is running low
on virtual memory”. This is because too many programs are running and the
memory manager is swapping a lot of activities between memory and disk, using
almost all of the disk space allocated for virtual memory.

4.4 Scheduler and dispatcher

The scheduler and the dispatcher work together to coordinate the execution of
the programs. The scheduler determines which programs are to be considered for
execution, and the dispatcher controls the allocation of times for these programs.
To understand how the scheduler and dispatcher work together, we must look
at one of the most fundamental concepts in modern time-sharing operating
systems, which is the distinction between the program itself and the activity of
executing the program.

• program: this is a static set of instructions to perform a task, and it does
not change over time

• execution of program: in a time-sharing system, this is a dynamic activity
whose properties change with time. A program can have infinite number
of executions in a time-sharing system depending on how it is brought in
and out of execution (see Figure 2).

The execution of a program is called a process. Therefore, associated with
a process is the current status of the activity, called process state. A process
states includes:

• current position of program being executed (program counter)

• contents of the CPU registers

• contents of the memory locations associated with the program

In other words, a process state is a snapshot of the machine at a particular
time of execution.



The main job of the scheduler can be summarized as follows:

1. It maintains record of all processes present in the system, called process
table.

2. It adds new processes to this table upon execution requests from the user.

3. It removes completed processes from the table.

The process table is stored in memory. Each process in the system has an
entry in this table. Each entry contains: (1) a process ID, (2) the area of memory
assigned to this process (obtained from memory manager), (3) the priority of
the process, and (4) the status such as Ready for execution or Waiting until
some external event occurs.

The dispatcher ensures the scheduled processes (those that are in the process
table) are actually executed. This is generally accomplished by time-sharing.
Time is divided in intervals of certain length, e.g. 50 milliseconds, and the
processes are rotated in and out of execution as explained before. The procedure
of changing from one process to another is called process switch or context
switch. Each time the dispatcher allocates a time interval for a process, it
initiates a timer circuit that will indicate the end of the interval. When this
happens, the timer sends an interrupt signal to the CPU.

CPU
timer

interrupt

Figure 7: Interrupt

How can we justify this design? In other words, why is it the CPU that
should be interrupted? We explore the answer to this question in class, but
for short, it is the CPU who is actually running the process. Moreover, the
dispatcher, which is another program, is idle (the CPU can run one program at
a time). Only the CPU can give back control to the dispatcher.

Now imagine this: what happens if you are reading a book and you are
interrupted by someone? You probably save the page number and the location
you reached so far on the page, so that you can restart your reading activity
later on. You are also likely to finish the current sentence before you actually
respond to the interrupt. The CPU does exactly the same thing:

1. CPU receives an interrupt signal

2. CPU completes the current machine cycle

3. CPU saves its position in the current process (program counter)

4. CPU saves contents of registers and vital information

5. CPU begins executing a program called “interrupt handler” which is part
of the dispatcher and is stored in a predetermined memory location

Although it can be handled by the dispatcher, typically the CPU is equipped
with control instructions to perform the above procedure. The interrupt handler
(i.e. the dispatcher) performs the following:



1. Dispatcher allows the scheduler to update priorities, e.g. lower the priority
of the current process and raise the priority for others.

2. Dispatcher selects a process with a highest priority among the ready ones
in the process table, restarts the timer circuit, and allows the selected
process to begin execution (setting the program counter).

5 Booting and BIOS

The operating system provides the infrastructure required by other programs,
but we have not considered how the operating system itself gets started! This
process is called boot strapping often shortened to booting, which is performed
every time the computer is turned on.

Let’s think how this can be done. Obviously we want to avoid the possibility
of introducing another kind of operating system to start the operating system!
We may design the CPU to always start with a predetermined value for the
program counter. We can store the operating system program starting at this
predetermined location in memory. When the computer is turned on, the CPU
starts fetching instructions from that location and the operating system starts
execution. However, this idea does not work. The reason is the following: Main
memory, RAM, is volatile. When the computer is turned off, everything in
RAM (including the operating system) is gone.

Therefore, another idea is to store the operating system program in a portion
of memory that is not volatile, e.g. Read Only Memory ROM. However, it would
be expensive to store the whole operating system in ROM because this would
require a large ROM. Moreover, it becomes hard to update the operating system
(need to change the ROM!).

The solution is the following: we store a small program, called the bootstrap
in ROM. This is the one that first executes when the computer is turned on. It’s
task is to direct the CPU to transfer the operating system from a predetermined
location on disk (the boot sector) into memory starting at a predetermined
location also. Then the bootstrap directs the CPU to execute a jump instruction
to that memory location.

ROM also contains a collection of software routines for performing funda-
mental input/output activities such as receiving information from keyboard,
displaying messages on screen, and reading data from disk. These will be used
by the bootstrap program to perform I/O activities before the operating system
becomes functional in memory. Collectively, they form the Basic Input Output
System BIOS. Therefore, BIOS is only a portion of ROM, although BIOS is
often used (incorrectly) to refer to the ROM itself.

6 Resource Allocation

An important task of the operating system is to allocate the machine’s resources
to the different processes. In a broad sense, a resource can be any feature in the
machine. As a concrete example, a resource could be a printer. It is important
to coordinate the use of the printer among different processes. For instance, if
two processes are simultaneously printing, then the printer receives data from
both, and the produced document is worthless.

To control access to a printer, the operating system must keep track of
whether the printer has been allocated. This can be simply achieved by a single



bit, called a flag. If the bit is 0 (flag is clear), then the printer is free. If the
bit is 1 (flag is set), then the printer is allocated. Therefore, before printing,
every process can execute a small program that is part of the operating system
to check the flag and see whether it can grab the printer or not. If the flag is
clear, the request to use the printer is granted. If the flag is set, the request is
denied. In this case, the process waits (it can repeatedly check the flag).

Although this sounds to be a good solution, unfortunately it does not work!
Here’s a scenario where this scheme would fail:

1. process 1 starts execution

2. process 1 checks the flag

3. process 1 determines that the flag is clear

4. process 1 is interrupted

5. process 2 start execution

6. process 2 checks the flag

7. process 2 determines that the flag is clear

8. process 2 sets the flag

9. process 2 grabs the printer and start printing

10. process 2 is interrupted

11. process 1 resumes execution (last time it determined that flag is clear)

12. process 1 sets the flag (it is already set by process 2 anyway)

13. process 1 grabs the printer and start printing

A solution to this problem is to disallow interrupt during a flag testing
routing. Another solution is to provide an instruction test-and-set that reads
the value of the flag, notes that value, and sets the flag, all in one machine cycle
(so it cannot be interrupted). This is not a trivial instruction (register has to be
read and written in one machine cycle). Such instruction is called a semaphore.
Most modern instruction sets provide semaphores.

Although semaphores guarantee correctness of resource allocation, one still
has to worry about resource allocation in the presence of multiple resources.
Here’s an example: Assume two resources A and B are required to perform
a certain task. Process 1 succeeds in grabbing resource A and is waiting for
resource B. Process 2 succeeds in grabbing resource B and is waiting for resource
A. Although nothing wrong has occurred in terms of two processes using the
same resource simultaneously, but no progress can be made. This is called
deadlock. Of course if nothing is happening, then nothing can go wrong!

Here’s a classical example that illustrate resource allocation and the problem
of deadlock, known as the Dining Philosophers.

Philosophers (processes) are seated on a round table, usually thinking. Be-
tween each pair of philosophers is a single fork (resource). From time to time,
any philosopher might become hungry and attempt to eat. To eat, the philoso-
pher needs exclusive use of the two adjacent forks. After eating, the philosopher
puts the two forks back on the table and resumes thinking.



Figure 8: Dining philosophers

If all philosophers become hungry at the same time, and they all grab their
left fork first, then they will be all waiting for their right fork to become available.
But no more forks will be available because all of the forks have been grabbed.
This is a situation of deadlock. No philosopher will be able to eat. Each
philosopher waits indefinitely for the right fork. Eventually, they may give up
and put back their left fork on the table. But if they do that at the same time,
and the all grab their left fork (or right fork) again, the deadlock situation is
reached again.

Randomization will help, i.e. each philosopher waits for a random time
then attempts to grab a fork. But here’s a strategy that is guaranteed to
work (i.e. avoid deadlock). The philosophers are numbered (either clockwise
or counterclockwise). The even numbered philosophers attempt to grab their
left fork first, so they wait until it becomes available and grab it. Once they
grab the left fork, they wait for their right fork to become available. The odd
numbered philosophers do the opposite. They attempt to grab their right fork
first, then wait for their left fork.


