
CSCI 120 Introduction to Computation

Computer Networks (draft)

Saad Mneimneh

Visiting Professor

Hunter College of CUNY

1 Introduction

Primitive forms of data networks have a long history. After all, it is all about
communication. Early societies used smoke signal to communicate information.
In the 19th century, telegraphy was used as means of communicating messages.
Messages were manually encoded into strings of symbols and then manually
transmitted and received. When necessary, the messages were manually relayed
at intermediate points. Example of such manual encoding and transmission
is the Morse code, created by Samuel Morse in the 1830s. Morse code used
standardized sequences of short and long marks or pulses (commonly known
as dots and dashes) to encode letters, numerals, and punctuation marks. For
instance the Morse code for the letter V is ...— 1. Reflecting on the knowledge
that we have accumulated in this course so far, this is equivalent to bits! A dot
corresponds to a 0 and a dash corresponds to a 1. Therefore, we can say that
telegraphy used binary symbols.

In the 1050s and 1960s, we have seen that central computers were connected
to terminals by links to form time-sharing real-time processing systems (see
Lecture 11). This constitute the first form of modern computer networks that
we are familiar with today.

terminal

central
processor

printer

Figure 1: Central computer network

1The 4 opening notes of Beethoven’s fifth symphony, named Victory, represent the Morse
code for the letter V: three short notes followed by a long note. This is just a coincidence.
Beethoven died in 1827 before Morse invented his code.



Later on, multiplexers were used to collect all the traffic from a set of pe-
ripherals in the same geographic area and send it on a single link to the central
processor. To free the processor from the burden of handling communication, a
special processor, called front end, was also developed to control communication.

terminal

central
processor

printer

front
end

Figure 2: Multiplexers and front end added

In these networks, and in contrast to telegraphy, communication is auto-
mated. However, while such a system can be referred to as a computer network,
it is simpler to view as one computer with remote peripherals. Real networks
emerged in the 1970s when ARPANET and SYMNET were introduced. These
were the first large scale general purpose computer networks connecting geo-
graphically distributed computer systems, users, peripherals, etc...

CPU

subnet

terminal

personal
computer

CPU

Figure 3: Computer network

Therefore, instead of having a computer as the center of the network, the
subnet (communication part of the network) becomes central. Inside the subnet
we have a set of nodes (these are usually computers in their own right), various
pairs of which are connected by communication links. Outside the subnet,
various computers, databases, terminals, and other devices, are connected via
the subnet. A message originates at an external device (the sender), passes



through the subnet from one node to another on the links, and goes out to the
external receiver.

The subnet contains a somewhat arbitrary placement of links between nodes.
This placement, often called topology, is typical of wide-area networks WANs,
i.e. networks covering more than a metropolitan area. In contrast, local-area
networks LANs, cover few square kilometers or less, and usually have more
restricted topologies, including ring, bus, and star. Today, bus topology, having
been standardized as Ethernet, is probably most popular.

(a) (b) (c)

Figure 4: LAN topologies: (a) ring, (b) bus, (c) star

Since the 1970s, there have been an explosive growth in the number of WANs
and LANs including ARPANET, TYMNET as WANs and Ethernet and token
ring networks as LANs. All these networks needed to connect and communicate.
In the 1980s many networks started to connect to each other as in the figure
below:

CPU

subnet

terminal

personal
computer

WAN

LAN

CPU

LAN

Figure 5: WANs and LANs

Conceptually speaking, one could regard a network of networks as a big-
ger network. Practically speaking, however, a network of networks is more
complicated then just a network of nodes. Because different networks evolve
differently and have different conventions and control algorithms for handling
data. Therefore, bridges and gateways (also called routers) were used to han-
dle the inhomogeneity. Bridges are used to connect LANs, while gateways are
used to connect WANs. This distinction has to do with routing and we will see
it when we talk about the network layered architecture.



bridge

WAN

WAN gateway
or router

Figure 6: Bridges and gateways

2 A flavor of network protocols

For a network to function properly, it is important to establish rules by which
network activities are conducted. Such rules are known as protocols. For in-
stance, consider the problem of coordinating transmission of messages among
computers in a network. If all computers insist on transmitting their own mes-
sages at the same time, without helping in relaying other messages, no message
will be delivered. We will describe two network protocols that address this issue
in LANs: Token ring and Ethernet.

2.1 Token ring

IBM developed in 1970 the token ring protocol. In this protocol, computers
are on a ring topology, and the messages are transmitted and relayed in only
one common direction (either clockwise or counterclockwise). Each message
has information about the sender and the intended receiver. When a message
reaches its destination, the receiver machine keeps a copy of it, but continues
the act the of relaying the message. Eventually, the message will reach back to
the originating machine, at which point, the machine knows that the message
must have been delivered and stops relaying it.

This scheme depends on the machines cooperation. If a machine insists on
constantly transmitting messages of its own rather than relaying those of other
machines, nothing will be accomplished. This is where the most important part
of the protocol comes in. A unique bit pattern (to distinguish it from any other
message), called a token, is passed around the ring. Possession of this token
gives the machine the right to transmit its own message. Normally, machines
relay the token in the same way they relay messages around the ring. But
when a machine wants to transmit a message, it grabs the token, and sends
its own message instead. Then this machine will wait until it sees its own
message again before releasing the token and relaying it to the next machine on
the ring. Therefore, since no other machine can posses the token during that
time, eventually the message will reach back to its sender (all machines are just
relaying). We can argue that eventually every message will be delivered because
every machine will have a chance to grab the token.

2.2 Ethernet

Ethernet was developed for a network with bus topology. In Ethernet, the
right to transmit messages is controlled by a collection of protocols known as
Carrier Sense and Multiple Access with Collision Detection CSMA/CD. With
this protocol, each message is broadcast on the bus to all machines. But every
machine keeps those messages that are only addressed to it. To transmit a
message, each machine “sense the bus”, and waits until it is silent, then beings



transmission. If another machine begins transmitting, both will “detect a clash”
and pause for a brief random (why?) period of time, and then retry.

3 Messages, packets, and sessions

So far we have deliberately used the term “messages” to signify units of com-
munication. But what constitute a unit of communication? The answer is:
“it depends”. From the standpoint of a network user, a message is a single
unit of communication. For that user, receiving part of the message would be
worthless. However, in the subnet or computer, the message is just a sequence
of bits. Moreover, in most networks, messages are broken into smaller chunks
called packets. Therefore, one should distinguish between a message and its
representation. A message carries a specific information that does not change;
however, that message may undergo several transformations as it travels from
sender to receiver, e.g. broken into packets, compressed, encrypted, etc...

Messages between two users occur as sequence in a larger transaction, such
sequence or messages or transaction is called a session, e.g. a user sending
messages to update a database. Typically, a setup procedure is required to
initiate the session, in this case the session is called a connection. In other
networks, no such setup is required, and each message is treated independently;
this is called a connectionless service. Therefore, it is important to look at
how messages (or packets) are transmitted during a session. We have two main
approaches to transmit packets in a session: circuit switching and store-and-
forward switching.

4 Circuit switching

When a session is initiated (connection) it is allocated a given rate in bits per
second (bps). A path is then chosen from source to destination, and each link
on this path allocates the desired portion of its capacity to the session.

some capacity
allocated

sender receiver

Figure 7: Circuit switching

Circuit switching, however, is rarely used in computer networks because
typical sessions tend to have a short burst of high activity, followed by long
inactive periods. Therefore, circuit switching would waste the allocated rate
during the time in which the session is inactive and not sending any packets.



session starts session ends

burst

inactive period
allocated rate wasted

Figure 8: Bursts and inactive periods

5 Store-and-forward switching

In store-and-forward, one packet is transmitted at a time using the full capacity
of the link. The links are still shared between different sessions, but the sharing
is done on a need basis, rather than by a fixed allocation of rates. Therefore,
if a packet needs to use a link, and that link is not available because another
packet is being transmitted, then the packet must wait. For this reason, queues
or buffers are used at every node. A packet waits in the buffer until the link is
available (hence the name store-and-forward).

Although queuing delays are hard to manage and control, it can be shown
that using communication link on a need basis often reduces delay in networks
relative to circuit switching. One of the major issues in buffered networks is
that buffers may become overloaded. Controlling the buffers might involve the
overloaded node to send to the offending inputs (those who are sending a lot
of packets) some control information telling them to slow down (this is one
technique for congestion control). But even then, a considerable number of
packets may already be in the subnet on its way to the node. When reaching
the buffer, those packets may be dropped as a result of buffer overflow.

Store-and-forward can be either connectionless, or can establish a connec-
tion. If connectionless, there is an issue of packet ordering: Packets travel
individually on different paths from the source to the destination and may ar-
rive in the wrong order. Since there is no established path, another issue with
connectionless store-and-forward is routing, which is to determine how packets
should travel from the source to the destination (we are not going to study
routing issues, but we will mention IP addresses later on).

If on the other hand a connection is established with store-and-forward
switching, it is called virtual circuit switching. This is a combination of
both approached (circuit switching and store-and-forward switching). In vir-
tual circuit switching, a particular path is set up when the session in initiated
and is maintained during the life of the session. But the capacities of the links
on that path are shared by sessions on a need basis, rather than by fixed allo-
cation of rates. This is why is it called virtual circuit switching; the path is not
really reserved.

6 Network Architecture

When designing complex systems, such as a network, a common engineering
approach is to use the concepts of modules and modularity. In this approach,
the design of the system evolves by breaking the big task into smaller tasks.
Each module is responsible for a specific task and provides services to the other
modules to accomplish their tasks. We can interact with a module as a black



box that provides certain functionality without knowing the details of how it
works. We only need to know how to interface with the module. Someone can
remove the module and update it with a newer one, and we would still be able
to continue our work in the same way. Moreover, modularity is important to
simplify tasks (divide and conquer). For instance, in a network, reliability of
message delivery and routing of messages can be treated separately by different
modules. Changing one would not impact the other. If a better routing proce-
dure is employed, it only affects the module responsible for it. Certainly, we do
not desire a change in routing to affect our ability to reliably deliver messages.

Modules often interact in a hierarchy. A network is designed as a hierarchical
or layered architecture in which every module or layer provides services to the
upper layer. Users, sitting at the top layer of the network, communicate as if
there is a virtual link between them, and need not be aware of the details of the
network. The following figure illustrates the standardized 7 layers of a network.
A description of each one follows.

physical

DLC DLC

network

data link 
control

network

transport

session

presentation

application

DLC DLC

network

physical physical physical physical

external
site

subnet
node

subnet
node

external
site

in out in out

physical

data link 
control

network

transport

session

presentation

application

physical link

virtual bit pipe

virtual link for

reliable packets

virtual link for end to end packets

virtual link for end to end messages

virtual session

virtual network service

user user

Figure 9: Network architecture: the 7 layers

6.1 Physical layer

The physical layer handles the actual communication using the physical link,
e.g. a modem or a network card. Therefore, the physical layer provides to
the layer above it a virtual link which could be considered as a simple bit pipe
carrying a flow of bits.

6.2 Data link control layer

The data link control, DLC, converts the unreliable bit pipe into a reliable
error-free link for sending packets in both directions. The goal is to ensure
that every packet is delivered once, only once, without errors, and in order. To
accomplish this task, the DLC inserts its own control information as header and



trailer to the packet received by the upper layer, i.e. the network layer. This is
an example of the message undergoing some transformations as it travels from
sender to receiver. The thus modified packet is called a frame. At the other
end, the DLC strips out the header and trailer to recover the original packet
and delivers it to the network layer.

packet

network layer

DLC layer

packet

packet

network layer

DLC layer

packet
reliable communication

frame

Figure 10: Frames: DLC inserts control information

In addition to other information, the DLC layers communicate sequence
numbers in the frame’s header and trailer to ensure delivery of packets in order.
This forms the basis for the virtual reliable packet link provided to the network
layer: once the recipient DLC ensures that it received a packet with the correct
sequence number, it delivers that packet to the network layer.

This technique of inserting headers and trailers to packets received the upper
layer (and stripping them out when the packet is delivered to the upper layer) is
performed by every layer in order to insert its own control information needed
to accomplish its task.

packet

packet

packet

packet

packet

packet

packet

packet

Figure 11: Layers inserting/stripping their control information

The MAC (medium access control) is considered a sublayer of the DLC and
handles the task of coordinate multiple access so that multiple nodes can use the
link. Since routing in LANs is done at this layer (e.g. token ring or CSMA/CD),
the bridge that connects two LANs usually talks to the MAC.

6.3 Network layer

The network layer uses its own packet header (and trailer) to accomplish routing
and flow control functions. For instance, the source/destination information can
be stored in the network layer’s header.



For networks using virtual circuit routing (i.e. the route per session is fixed
over the lifetime of the session and store-and-forward is used):

• The route must be selected. This is usually carried in a distributed way
by all the nodes in the subnet. The standard X.25 accomplished this task
using the concept of virtual channels (we will skip the details here).

• Each packet must be ensured to follow the assigned route. This can be
done by placing enough information in the header, e.g. (1) previous node
and (2) virtual channel number (we will skip the details here again).

For other networks that do not require a connection phase, usually called
datagram networks, each packet is routed individually. Although this appears
to be a very natural and simple approach (for instance, it does not require
extra information to be stored in the packet header), the dynamic nature of the
traffic and the lack of timely knowledge about traffic patterns makes it much
more difficult that one would think. For one thing, order of packets becomes an
issue because packet follow different routes. Therefore, most WANs use virtual
circuit switching.

The IP (Internet Protocol) standard accomplishes the routing of packets in
datagram networks. With IP, since no route information is provided, the source
and destination of a packet must be universally recognizable throughout the
internet. This is done by using IP addresses. Each node in the network has an
IP address which is a 32 bit address that uniquely identifies it. The IP address
consists of four 8 bit numbers (a total of 32 bits), e.g. 146.95.2.168.

The immediate user of the network layer, i.e. the transport layer is definitely
concerned with the type of service provided by the network layer. Based on the
above description, we have two kinds of services.

• virtual circuit service: all packets are delivered once, only once, and in
order, but connection is required.

• datagram service: packets can be delivered out of order and may occa-
sionally fail to be delivered, but connectionless.

In addition, the network layer is responsible for congestion control. Unlike
LANs (e.g. token ring and CDMA/CD), since each WAN implements its own
flow and congestion control algorithms, it is not easy to simply connect two
networks together. The gateway or router is used to connect two WANs. The
gateway is actually considered to operate in a sublayer of the network layer
called the internet sublayer and is part of both networks, called subnets in that
context. A gateway connecting two subnets interfaces with each subnet using
the appropriate network layer compatible with that subnet. Compare this to
the bridge which works at the DLC level for LANs.

6.4 Transport layer

The transport layer is responsible for the following:

• Breaking messages into packets for the network layer (and re-assembling
them).

• Multiplexing several low rate sessions into one, thus reducing overhead
(the network layer sees one session).



• Splitting a high rate session into multiple ones which is useful when the
network layer cannot handle high rate session.

• Achieving reliable end-to-end communication if the network is unreliable,
e.g. IP datagram (even if the network is reliable, failures are possible).

A famous example for a transport layer standard is TCP (Transmission
Control Protocol). When combined with IP at the network layer, we refer to
the whole thing as TCP/IP.

6.5 Session layer

The session layer mainly deals with access rights in setting up sessions, e.g. who
has access to particular network services, etc...

6.6 Presentation layer

The major functions of the presentation layer are data encryption/decryption
and , data compression/decompression.

6.7 Application layer

The application layer is simply what is left over. Each application performs
something specific to the user needs, e.g. browsing the internet, transferring
files, sending text messages, etc...


