CSCI 120 Introduction to Computation
Inside a computer (draft)

Saad Mneimneh
Visiting Professor
Hunter College of CUNY

1 The Computer Architecture

Let’s recall from Lecture 3 the architecture of a modern computer, illustrated
again below.

Central Processing Unit CPU

control

instruction
and
data
memory

fetch | |
instr.

i
M

registers

110

input/output devices

Figure 1: Computer architecture

In the figure above, we can identify five main components of a computer
architecture:

1.1 Main memory

As explained before, the main memory contains both data and programs. This
is basically the idea behind a stored-program computer. The program is treated
as data, and is stored in memory. But how can the program be treated as data?
To answer this question, we need to ask a second question: What is a program?
Luckily, we know the answer to this second question. Since a program is simply
the encoding of an algorithm, it consists of a sequence of computational steps
that perform a certain task. Therefore, in order to store a program as data, we
need to store this sequence of steps. Each step, called an instruction, will have
a unique representation in bits such that the control unit of the computer will

recognize it when fetching it from memory. The set of all these instructions is
called the instruction set of the computer (see Section 1.5).

1.2 CPU (Central Processing Unit)

The Central Processing Unit (CPU) is the brain of the computer. The CPU
found in today’s computers (e.g. Pentium and Celeron by Intel, and Athlon
and Sempron by AMD) is a small flat chip (approximately two inches by two
inches) that is connected by pins into a socket mounted on the computer’s
main circuit board, which is the body of the computer and usually referred to
as the motherboard. The motherboard has a bus (collection of wires) that
connected the CPU to other components such as memory and input/output
controllers (keyboard, mouse, disks, monitor, etc...).

1.2.1 Control unit and registers

The control unit contains the necessary circuitry to coordinate the machine’s
activity. Instructions are fetched from memory for execution by the control
unit. The control unit decodes the instruction and determines what needs to be
done. If for instance an arithmetic operation is to be performed, the control unit
forwards the desired operands to the arithmetic and logic unit ALU. Together,
they form the Central Processing Unit, CPU. For temporary storage of infor-
mation, the control unit uses a number of registers [modern form of Babbage
s piles of disks :)]. These registers are used as place holders for the operands
and the results of arithmetic or logical operations performed by the ALU (see
below). A special register, called the program counter, holds the value of the
memory location from which the next instruction needs to be fetch. Therefore,
when the control unit fetches an instruction, it also increments the value in the
program counter appropriately to point to the next memory location from which
the next instruction will be fetched (unless the current instruction is a Jump,
see Section 1.5 on instruction set). Another special register is the instruction
register in which holds the instruction being fetched from memory.

1.2.2 ALU (Arithmetic and Logic Unit)

The ALU is responsible for performing the arithmetic operations such as addi-
tion, subtraction, multiplication, division, and relational operators such as <,
=, >, as well as logical operations, such as the Boolean operations AND, OR,
NOT, etc... Logical operations are usually performed bit-wise, e.g. 10010110
AND 11001001 = 10000000. The ALU operates on registers only. To perform
operations on data stored in memory, the control unit transfers the data from
memory into the registers, informs the ALU which registers hold the data, acti-
vates the appropriate circuit within the ALU to perform the desired operation,
and informs the ALU which register should receive the result. The result can
be then transferred from the register to memory if desired. This transfer of
information (bits) to and from memory is done through a collection of parallel
wires on the motherboard called the bus.

1.3 Bus

A nice analogy for describing the bus is the Hunter College bridge on the third
floor that connects the East building to the West building and the West building
to the North building. If we imagine that the West building is the CPU, the

East building is memory, and the North building is I/O, then we can visualize
students as bits moving between these three components using the bridge. The
bus on the motherboard acts in the same way. It is basically a collection of
parallel wires. The width of the bus (i.e. number of parallel wires) depends on
the size of a word in memory and on the memory capacity. For instance, to
read from memory, the CPU puts on the bus the bit pattern of the address of
the memory location to be read, together with the appropriate signals telling
the memory that it is supposed to retrieve the data stored in that location.
Similarly, when writing into memory, the CPU puts on the bus the bit pattern
of the desired address of the memory location to be written, the data to be
stored, and the appropriate signals telling the memory that it is supposed to
store the provided data in that location. The following figure explains the
concept:

10111010
10001101
word
01101101
byte — | 01011110
10100001
10110001
00110111
read signal
11110001
01110010 write signal
10000110 address
00000110 data
memory T
bus

Figure 2: Bus

It is worth mentioning here that the computer’s internal bus is called a
parallel bus because data is transferred in parallel using all wires. In contrast,
a serial bus consists of one wire where data is transferred serially one bit at
a time, e.g. USB (Universal Serial Bus). USB is an also called an external bus
because it is used for communication between the computer and an external
device (e.g. flash drive). But this distinction is not clear, for instance, the bus
that communicates data between the computer and an external hard drive is
often on the motherboard (more on this later).

1.4 I/O controllers

Communication between a computer (CPU and memory) and peripheral devices
such as printers, disks, mice, keyboards, etc... is normally handled through an
intermediate device known as controller (see Figure 1). The controller may be
permanently mounted on the motherboard (e.g. IDE controllers for hard disks),
or may plug into a slot on the motherboard (e.g. graphic cards controllers for
monitors). In either case, the controllers connects to the peripheral device by
cables either within the computer case, or to a connector in the back of the

computer case, known as port. The device can then be attached to the port
externally.

We may think of a controller as a small computer by itself. It has its own
memory and CPU and is responsible for translating the data back and forth in
forms compatible with the computer and the device attached to it. Therefore,
each device has its own controller. However, standards have been developed
to handle a variety of devices using a single controller. Such standards include
USB (Universal Serial Bus). A USB controller can be used to interface between
a computer and a USB compatible device. Today, most devices are USB com-
patible. This includes mice, keyboard, printers, external mass storage devices,
scanners, digital cameras, mp3 players, etc...

As Figure 1 illustrates, a controller is connected to the bus in the same way
memory is, so that the CPU can communicate data to the controller and vice-
versa. Usually, the transfer of data to and from controllers is done using the
same mechanism illustrated in Figure 2. To prevent conflict between a controller
and main memory, however, each controller is designed to respond to unique set
of addresses that main memory will ignore. This mechanism is called memory-
mapped I/0 because the computer’s input/output devices appear as if they
reside in various memory locations.

10111010
10001101
01101101

word

byte — | 01011110
10100001
10110001

read signal

1/0 device — controller —

write signal

cPU
00000110

memory

Figure 3: Memory-mapped I/0O

A controller may also access memory directly using Direct Memory Ac-
cess (DMA) (but more on this later).

1.5 Instruction set

Any computation must be modeled as a series of instructions. Therefore, an-
other interesting question is how to come up with such an instruction set. There
are two philosophies:

e Reduced Instruction Set Computer (RISC): The instruction set is very
small with only a minimal number of simple instructions. With RISC, the
machine is fast and efficient; however, a more complex operation would re-
quire a sequence of multiple instructions. Examples of RISC architectures:
Power PC series (including those that apple call G4 and G5), developed
by Apple, IBM, and Motorola.

e Complex Instruction Set Computer (CISC): The instruction set contains
a large number of complex instructions, even though many of them are

technically redundant. Example of CISC architectures: Intel Pentium
series.

Regardless of which philosophy is followed, any computation must be able
to be carried out by a sequence of instructions from the instruction set. Here’s
an example: Assume we want to add two values stored in memory locations 108
and 109, and store the result in memory location 110. Since the ALU operates
on registers only, the addition operation is usually carried out as follows:

1. copy the value (the bit pattern) stored in memory location 108 to one of
the registers, say R

2. copy the value (the bit pattern) stored in memory location 109 to another
register, say S

3. use the ALU to perform addition with R and S being the operands and
store the result (the output of the ALU) in a third register, say T'

4. copy the value (the bit pattern) from T" to memory location 110
5. halt

The five instructions above are usually stored somewhere in memory in con-
secutive locations. Each instruction may occupy several bytes (or words). The
control unit (see Section 1.2.1) is responsible for fetching these instructions one
at a time in order and executing them.

With this addition example in mind, we can usually group the instructions
of an instruction set in three groups:

e data transfer: This group consists of instructions that move data from
one location to another. For example, steps 1, 2 and 4 of the addition
operation illustrated above fall into this category. Although we use the
terminology transfer, it is rare that the date being transferred is erased
from the original location. For instance, memory location 108 still holds
the same value after step 1 above. Therefore, the term copy provides a
better description to this group of operations. Special terms are used for
specific kinds of transfers or copies. Copying a value from memory to a
register is called a LOAD instructions. Copying a value from a register to
memory is called a STORE operation. Therefore, steps 1 and 2 are LOAD
instructions, while step 4 is a STORE instruction. Some data transfers
involve I/O devices (such as printers, keyboards, monitors, disks, etc...).
However, these I/O transfers can be handled by the same instructions that
request data transfer between the CPU and main memory (see Section 1.4
on I/O controllers).

e arithmetic/logic: This group consists of instructions that perform arith-
metic operations, such as addition, subtraction, multiplication, division,
and relational operators such as <, =, >, as well as logical operations, such
as the Boolean operations AND, OR, NOT, etc... Logical operations are
usually performed bit-wise, e.g. 10010110 AND 11001001 = 10000000.
Step 3 of the addition operation illustrated above is an example of arith-
metic/logic instruction.

e control: This group consists of instructions that direct the execution of
the program rather than the manipulation of data. For example, step 5

of the addition operation illustrated above falls into this category. This
group contains more interesting control instructions such as the JUMP
instructions which are used to direct the control unit to fetch an instruction
other than the one that appears in the next memory location. This is done
by explicitly setting the program counter (see Section 1.2.1) to the desired
memory location.

