
CSCI 120 Introduction to Computation

Inside a computer (cont.) (draft)

Saad Mneimneh

Visiting Professor

Hunter College of CUNY

1 Example instruction set

Each instruction is identified by a unique bit pattern (called the opcode) and
some operands depending on the type of the instruction. For instance, we as-
sume just for the sake of illustration that instructions are 16 bit long and that
the first 4 bits represent the opcode (i.e. determines what the instruction is).
The remaining 12 bits represent the operands depending on the type of the in-
struction.

Data transfer Register ↔ Memory

¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤¤¤¤¤︸ ︷︷ ︸
opcode register memory/operand

e.g.

Load register with memory location: LOAD R (value)MEM

0001︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤¤¤¤¤︸ ︷︷ ︸
opcode register memory

Load register with operand: LOAD R (value)OP

0010︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤¤¤¤¤︸ ︷︷ ︸
opcode register operand

Store register in memory location: STORE R (value)MEM

0011︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤¤¤¤¤︸ ︷︷ ︸
opcode register memory



Data transfer Register ↔ Register

¤¤¤¤︸ ︷︷ ︸ 0000 ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode register register

e.g.

Copy data from register R to register S: COPY R S

0100︸︷︷︸ 0000 ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S

Arithmetic/logical Register, Register, Register

¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode register register register

e.g.

Add values in registers R and S and put result in register T: ADD R S T

0101︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S T

If the value in R > that in S put 1 in T, else put 0 in T: CMP R S T

0110︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S T

If the value in R = that in S put 1 in T, else put 0 in T: EQ R S T

0111︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S T

AND the bit patterns in registers R and S and put result in register T: AND
R S T

1000︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S T



OR the bit patterns in registers R and S and put result in register T: OR R
S T

1001︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S T

NOT the bit pattern in register R and put result in register S: NOT R S

1010︸︷︷︸ 0000 ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤︸ ︷︷ ︸
opcode R S

Control

e.g.

Jump to memory location if the value in register R is not 0, else continue:
JUMP R (value)MEM

1011︸︷︷︸ ¤¤¤¤︸ ︷︷ ︸ ¤¤¤¤¤¤¤¤︸ ︷︷ ︸
opcode R memory

Halt: HALT

1100︸︷︷︸ 0000 0000 0000

opcode

Therefore, the above fictitious (and over simplified) instruction set assumes
that the machine has 16 registers (from 0000 to 1111) and 256 memory locations
(from 00000000 to 11111111). Moreover, it assumes that the size of each register
(also each operand) is 8 bits, i.e. 1 byte (because of instruction 2).

2 The wolf, the sheep, and the lettuce

A boy wants to cross the river and transport a wolf, a sheep, and a lettuce to
the other side. However, he has a small boat, and can carry only one item at a
time. Therefore, he has to make several trips. But if the sheep and lettuce are
left unattended, the sheep will eat the lettuce. If the wolf and the sheep are left
unattended, the wolf will eat the sheep. What should the boy do?

wolf sheep lettuce



Here’s a possible solution:

• transport the sheep to the other side

• come back

• transport the wolf to the other side

• bring back the sheep

• transport the lettuce to the other side

• come back

• transport the sheep to the other side

This resembles what we do in programming. We have to move things around
between memory and processor/registers (the other side) in an intelligent way
to satisfy a bigger task. Similar to the boy in this story, we are constrained in
what we can do. There are only few instructions that we can perform, and yet,
we are usually asked to put these instructions together to accomplish a certain
goal. The following section describes an example.

3 An example program

Consider the following task: we wish to add all the integers from 1 to 10. Of
course we can do that manually to obtain that 1+2+3+4+5+6+7+8+9+10 =
55. We can also use the formula 1 + 2 + . . . + n = n(n+1)

2 . So for n = 10, we
have 10×11

2 = 110
2 = 55. As a side remark, there is a very nice way of showing

that 1 + 2 + . . . + n = n(n+1)
2 : Let call S = 1 + 2 + . . . + n. Then 2S = S + S

S = 1 + 2 + . . . + n
+S = n + n− 1 + . . . + 1
2S = (n + 1) + (n + 1) + . . . + (n + 1)

—— —— —— ︸ ︷︷ ︸ —— —— ——

2S = n(n + 1)

It has been told that the mathematician Gauss discovered this formula when
his third grade teacher asked the class to find the sum of numbers from 1 to
100, and he instantly computed the result 5050.

But let’s say that we want to compute this sum by a computer program
without using the formula. Therefore, we have to carry out the sum explicitly.

How do we go about performing the sum using a computer? First of all, we
have to ask ourselves the following question: What is the first thing we have to
think about when we need to perform a certain task? And if I guess right, we
already know the answer to this question: an algorithm.

So let’s think of an algorithm. We definitely need to keep track of the sum.
So let’s start with the sum S = 0. We repeatedly add to S the appropriate
number. First, we have to add 1, then we have to add 2, etc... But how do
we keep track of which number of add. Obviously the number to add increases
by 1 after every addition. So if we start with that number being 0, we have to
repeatedly increment the number and add it to S until we reach 10, where we



perform the last addition.

S ← 0
x ← 0

x ← x + 1
S ← S + x

x ← x + 1
S ← S + x

...

x ← x + 1
S ← S + x





10 times

Now that we have the algorithm, let’s see how we can implement it using
the machine language, i.e. the instruction set. Obviously we need to keep track
of S and x, and for that we can use two registers, say R0 and R1, respectively.

First, we need to load the appropriate initial values in the registers. We can
use the instruction that loads a register with a specific operand.

Load R0 00000000
Load R1 00000000

We also need the number 1, which we keep adding to x. Let’s store this into
another register, say register R2.

Load R2 00000001

Next, we need to repeat 10 times: add 1 to x and add x to S (we call this
the procedure below). We can do that by first adding the values in registers R1

and R2 and storing the result in register R1, then adding the values in registers
R0 and R1, and storing the result in register R0.

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1



Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Add R1 R2 R1

Add R0 R1 R0

Halt

Now R0 holds the result. Our final program will be as follows:

0010000000000000
0010000100000000
0010001000000001
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
0101000100100001
0101000000010000
1100000000000000

This does not look so bad. But what if we need to perform what once Gauss
was asked, i.e. compute the sum for n = 100? More generally, what if n is large?
Our program will get larger and larger. Not only we will have to generate such
a large program, but also we will waste the memory to store the program! More
importantly, we have to write a different program for different values of n.

An important thing to notice is that our program contains redundant parts.
We repeat the same procedure 10 times. So there must be a way to store that
procedure only once in memory and instruct the program to repeat it a variable
number of times. This can be done using the Jump instruction.

Let’s say that our program is stored in memory starting at location 100. We
first need to perform some initialization (loading registers with some values) and
then perform the procedure for the first time. Say that procedure is stored in
memory starting at location 200. Then after performing the last instruction of
that procedure, we can instruct the control unit to jump back to location 200,
using a Jump instruction. The procedure will be executed again. Actually, it
will be executed indefinitely, because every time we perform the procedure, we
jump back to location 200.



Therefore, we also need a way to stop. Luckily, the Jump instruction is
conditional. The Jump instruction specifies two parameters: a register and a
memory location. The Jump instruction jumps to the specified memory location
only if the value in the specified register is not 0.

We can initially load a register with the value n. Every time we perform
the procedure, we also decrease the value in that register by 1, i.e. we subtract
1 from it. Hopefully we know how to do that, we just need to add the repre-
sentation of -1 in two’s complement. So that part is easy. Now we can make
our Jump instruction conditional on that register. It will always Jump until the
value in the register becomes 0. Therefore, we execute the procedure exactly n
times.

(Start with some initialization)
100: Load R0 00000000 (S ← 0)
102: Load R1 00000000 (x ← 0)
104: Load R2 00000001 (this is 1)
106: Load R3 11111111 (this is −1)
108: Load R4 n (in binary representation)
110: Jump R4 11001000 (this is 200)
112: Store R0 11011100 (store the value of R0 in memory location 220)
114: Halt
...
(the procedure)
200: Add R4 R3 R4 (R4 ← R4 − 1)
202: Add R1 R2 R1 (R1 ← R1 + 1)
204: Add R0 R1 R0 (R0 ← R0 + R1)
206: Jump R4 11001000 (jump to 200 if R4 6= 0)
208: Store R0 11011100
210: Halt

The final result can be retrieved from memory location 220. The program
as loaded into memory will be as follows:

100: 0010000000000000
102: 0010000100000000
104: 0010001000000001
106: 0010001111111111
108: 00100100 n
110: 1011010011001000
112: 0011000011011100
114: 1100000000000000
200: 0101010000110100
202: 0101000100100001
204: 0101000000010000
206: 1011010011001000
208: 0011000011011100
210: 1100000000000000

Usually, a programmer does not have to write this kind of program using
the native machine language (the instruction set). High level programming lan-
guages such as C, C++, and Java are available. The programmer can write the



program in a high level language using an easier syntax, and then the binary
program that can be loaded into memory is generated. For instance, here’s a C
syntax for a function called sum:

int sum(int n) {
int S = 0;
int x = 0;
int i;
for (i = n; i > 0; i = i - 1) {

x = x + 1;
S = S + x;

}
return S;

}

The sum S = 1 + 2 + . . . + n can be also computed using the concept of
recursion:

int sum(int n) {
if (n == 0)

return 0
else

return n + sum(n - 1)
}

Here the function sum, which computes the desired sum, is defined in terms
of itself. This is not a circular definition because the function is defined in terms
of the same function on smaller values. So eventually it will stop. This is called
a recursive definition or simply recursion.

The above function is simply saying the following: if n is equal to 0, then just
return 0; otherwise, return the result of adding n to the result of the function
sum evaluated on n − 1. This is not to be surprising because if we define
S(n) = 1 + 2 + . . . + n, then S(n) = n + S(n− 1) by definition. So for instance,
if n = 10, the first call to the function will return 10+sum(9). But sum(9) will
recursively initiate another call to the function sum with n = 9 this time, and
will return 9+sum(8), and so on until we reach sum(0), which returns 0. We end
up with 10+9+8+ . . .+2+1+0. We will look at other examples of recursion
later when we discuss the topic of computation as seen by various disciplines
such as linguistics, literature, poetry, music, architecture, biology, etc...

Almost all programming languages have similar constructs as the ones we
see above (these are not all constructs though):

• variables: names or place holders for values, e.g. S and x.

• functions: these help define procedures that accepts some parameters as
input and return a value as output. They can be regarded as building
blocks or black boxes. A procedures accepts an input and produces an
output. In our case, the input is n, the output is 1 + 2 + . . . + n.

• conditional: if-else statement, if the condition is true the statement exe-
cutes the part that appears after if; otherwise, it executes the part that
appears after else.



• loops: for loop statement or while loop statement, while the condition is
true, the part inside the loop is executed over and over, until the conditions
becomes false. In the case above, the condition is that i must be greater
than 0, and i is decremented every time the loop is entered.

• recursion: a way to defined expressions recursively. This is sometimes
very convenient for expressing an idea, e.g. S(n) = n + S(n− 1), but not
necessarily the most efficient.


