
CSCI 415 Computer Networks

Homework 1

Solution

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1
Listen to the first movement of Beethoven’s fifth symphony.

ANSWER:

Problem 2
Write the following sentence in Morse code:

“I am in the CSCI 415 class.”

ANSWER:

.. .- -- .. -. - -.-. ... -.-.- .---- -.-. .-.. .-

Problem 3
Compile the following server and client C++ code and run it. You will be asked
to modify the code in a later homework.

server.c

#include <iostream>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

using std::cout;

using std::cin;

const unsigned short int port = 5432;

const int max_pending = 10;

const int max_len = 256;

int main() {

sockaddr_in address; //address

sockaddr_in client_address; //client address

char message[max_len];

int s;

int new_s;

int len;

//build address

memset(&address, 0, sizeof(address));

address.sin_family = AF_INET;

address.sin_addr.s_addr = htonl(INADDR_ANY);

address.sin_port = htons(port);

//setup passive open

if ((s=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

cout<<"error in socket";

return 0;

}

//bind socket to address

if (bind(s, (sockaddr *)&address, sizeof(address)) < 0) {

cout<<"error in bind";

return 0;

}

if (listen(s, max_pending) < 0) {

cout<<"error in listen";

return 0;

}

//wait for connection, then receive message

socklen_t size = sizeof(sockaddr_in);

while (1) {

if ((new_s = accept(s, (sockaddr *)&client_address, &size)) < 0) {

cout<<"error in accept";

return 0;

}

while (len = recv(new_s, message, sizeof(message), 0)) {

cout<<message<<"\n";

}

close(new_s);

}

}

client.c

#include <iostream>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

using std::cout;

using std::cin;

const unsigned short int port = 5432;

int main() {

int s;

sockaddr_in address; //address to connect to

memset(&address, 0, sizeof(address));

address.sin_family = AF_INET;

address.sin_port = htons(port);

address.sin_addr.s_addr = htonl(INADDR_ANY); //my IP address

//active open

if ((s=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

cout<<"error in socket";

return 0;

}

//connect

if (connect(s, (sockaddr *)&address, sizeof(address)) < 0) {

cout<<"error in connect";

close(s);

return 0;

}

char message[256];

while(cin.getline(message, 256, ’\n’)) {

if (strlen(message) == 0)

break;

send(s,message,strlen(message)+1,0);

}

close(s);

return 0;

}

Start one server and one client in separate windows. Start the server first; oth-
erwise, the client will not be able to connect to the server and will report an error
and exit. The client should accept messages from the keyboard (you) and sends them
to the server. The server just echoes what you send. To exit the client just type an
empty message (hit Enter).

Notes:

If you are using Windows, you only need to include the following header files:

#include <iostream>

#include <winsock.h>

Also, you need the following Windows specific initialization of sockets in both
the server and the client:

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(1, 1);

WSAStartup(wVersionRequested, &wsaData);

Replace this line in the client:

address.sin_addr.s_addr = htonl(INADDR_ANY); //my IP address

by the following line:

address.sin_addr.s_addr = inet_addr("127.0.0.1");

//127.0.0.1 designates the local host

Also replace socklen t by int and close by closesocket and compile with the
linker option -lwsock32 if needed.

Problem 4
Calculate the total time required to transfer a 1000 KB file in the following
cases assuming an RTT of 100 ms, a packet size of 1 KB, and an initial 2xRTT
of “handshaking” before data is sent:

(a) The bandwidth is 1.5 Mbps, and data packets can be sent continuously.

ANSWER: We have a 2xRTT initial handshake, followed by the time to trans-
mit 1000 KB, and finally the propagation delay (half RTT) for the last bit to
reach the other side. Therefore, we have:

2 · 0.1 + 1000 · 210 · 8/(1.5 · 106) + 0.1/2 = 5.711 sec

(b) The bandwidth is 1.5 Mbps, but after we finish sending each data packet
we must wait for one RTT before sending the next.

ANSWER: After transmitting a packet, we wait for one RTT. Therefore, since
RTT>transmission time+propagation delay, by the time we transmit the next
packet, the first packet has already reached the other side. So, we need the
transmission time of a packet + one RTT for each of the first 999 packet. For
the last packet, we must wait for the propagation delay for the last bit to reach
the other side. Therefore, the total time is as before plus 999 RTTs.

5.711 + 999 · 0.1 = 105.611sec

(c) The bandwidth is “infinite”, meaning that we take transmit time to be zero,
and up to 20 packets can be sent per RTT.

ANSWER: We have 49 RTTs between batches of 20. The last batch needs
half RTT for propagation delay. We also have the 2 initial RTTs, for a total of
51.5 RTTs, i.e. 5.15 sec.

(d) The bandwidth is infinite, and during the first RTT we can send one packet
(20), during the second RTT we can send two packets (21), during the third
RTT we can send four packets (22), and so on. (We will look at this technique
later on.)

ANSWER: Note that 1 + 2 + 4 + . . . 2l = 2l+1 − 1. Therefore, we want
2l+1 − 1 ≥ 1000, which means l = 9. We must wait for half an RTT at the end
for the propagation delay. With the 2 initial RTTs, this is 11.5 RTTs, i.e. 1.15
sec.

