
CSCI 415 Data Communication Networks

Homework 5

Solution

Saad Mneimneh

Visiting Professor

Hunter College of CUNY

Problem 1: File Transfer
Consider a simple UDP-based protocol for requesting files (based somewhat
loosely on the Trivial File Transfer Protocol, TFTP). The client sends an initial
request, and the server answers (if the file can be sent) with the first data packet.
Client and server continue with a stop and wait transmission mechanism.

(a) Describe a scenario by which a client might request one file but get another;
you may allow the client application to exit abruptly and be restarted with the
same port.

ANSWER:

1. The client sends a request for file “foo”

2. The request arrives at the server

3. The client abort locally, but restarts with the same port

4. The client sends a new request for file “goo”

5. The second request is lost

6. The server responds with the first data packet of “foo”, answering the only
request is has actually received

7. The client start receiving “foo” thinking its “goo”

(b) Propose a change in the protocol that will make this situation much less
likely.

ANSWER: Requiring the client to use a new port number for each separate
request would solve the problem. To do this, however, the client would have to
trust the underlying operating system to assign a new port number each time a
new socket was opened. Having the client attach a timestamp or random num-
ber to the file request, to be echoed back in each data packet from the server,
would be another approach fully under the applications control (something like
in TCP, but see last problem).



Problem 2: Internet checksum
In ones complement arithmetic, a negative integer −x is represented as the com-
plement of x, that is each bit of x is inverted (that’s 1111111111111111−x, hence
the name). Therefore, 5 is 0000000000000101, and -5 is 1111111111111010. Sim-
ilarly, 3 is 0000000000000011 and -3 is 1111111111111100. When adding num-
bers in ones complement, a carryout from the most significant bit must be added
to the result (unlike in twos complement that is used in most machines). There-
fore, if we add 1111111111111010 and 1111111111111100 ignoring the carry we
get 1111111111110110. In ones complement arithmetic, the fact that this op-
eration caused a carry from the most significant bit causes us to increment the
result, giving 1111111111110111, which is the ones complement representation
of -8 (obtained by inverting the bits), as we would expect.

The Internet checksum algorithm is the following: data is checksummed as a
sequence of 16 bit integers. They are added together using a 16 bit ones com-
plement arithmetic and the checksum is obtained as the ones complement of
the result. The receiver adds all 16 bit words received including the check-
sum and, therefore, must obtain 1111111111111111 (the ones compliment of
0000000000000000) which is also a zero in ones complement).

This problem is designed to help you appreciate the Internet checksum algo-
rithm. We start by asking the following questions:

• Beside the ease of implementation in software, how do we justify the use
of a checksum?

• If the use of a checksum is justified, why ones compliment arithmetic?

(a) Why a checksum (incremental updates)? Assume a router needs to change a
word in the header from x to y before forwarding the packet, e.g. decrementing
the TTL (time to live) of the packet. Argue that the new checksum can be
obtained by simply adding x + ȳ to the previous checksum, where ȳ is the ones
complement of y.

ANSWER: The checksum is s =
∑

i xi + x. If x is to be replaced by y, we
need to update s to s′, where s′ =

∑
i xi + y. Therefore s′ =

∑
i +x + x̄ + y =∑

i +x + x + ȳ = s + x + ȳ.

(b) Why ones compliment (endian independent)? Little endian computers store
numbers with the least significant byte first (Intel processors for example). Big
endian computers put the most significant byte first (IBM mainframes for ex-
ample). Show that adding 16 bit numbers in ones complement arithmetic is
endian independent. More specifically, if AB+CD=EF , then BA + DC = FE
(this is not necessarily true if ones complement arithmetic is not used), where A,
B, C, D, E, and F are 8 bit numbers and, for instance, AB is a 16 bit number
with A being the most significant byte and B being the least significant byte.

ANSWER: One can actually prove a stronger statement. Let x + y = z in
ones complement arithmetic. If x′ and y′ and z′ are circular shifts (by the same



amount) of x, y, and z respectively, then x′+ y′ = z′ in ones complement arith-
metic.

A B

C D

AB

CD

E F

+ +

EF

case 1 No carry from F to E
and no carry out of E

No carry from E to F
and no carry out of F

case 2 There is a carry from F
to E and no carry out of
E

There is a carry out of
F that wraps around and
gets added to E (which
produces no more carry)

case 3 symmetric to case 2

case 4 There is a carry from F
to E and a carry out of
E that wraps around and
gets added to F (not nec-
essarily in that order)

There is a carry from E
to F and a carry out of
F that wraps around and
gets added to E (not nec-
essarily in that order)

Problem 3: Wait before closing the connection
Read about the netstat Unix/Window utility (e.g. the man page for netstat on
Unix). Use the netstat utility to see the state of your local TCP connections.
Find out how long closing connections spend in the waiting state. For instance,
you can use your server/client program from the second homework and observe
how long it takes the client to close the connection. What happens if another
client contacts the server while the previous client is in the wait state (observe
the port numbers).

ANSWER: 2 minutes. Each client gets a new port number.

Problem 4: Designing a protocol header
You are hired to design a reliable byte-stream protocol that uses a sliding win-
dow (like TCP). This protocol will run over a 1 Gbps network. The RTT of the
network is 140 ms, and the maximum segment life is 60 seconds. How many
bits would you include in the Advertised Window and Sequence Number fields
of your protocol header?

ANSWER: The window size (in bytes) must be RTTxBandwidth = 109

8 ×
0.14 = 17500000 bytes. We need therefore, 25 bits for the advertized window
(allows a maximum window size of 33554431 bytes).



In 60 seconds, 199

8 × 60 = 7500000000 bytes can be transmitted. They must
all have unique sequence numbers. Therefore, we need 33 bits for the sequence
numbers.

Problem 5: Sequence numbers and fooling the server
If server A accepts a TCP connection from client B, then during the three-way
handshake A sent its initial sequence number to B and received an acknowledg-
ment from it. Therefore, another client C can pretend to be B in the following
way:

• C sends a SYN packet to open TCP connection to A pretending to be B

• A sends its SYN+ACK packet with its initial sequence number as part of
the three-way handshake to B, and waits for the acknowledgement

• B ignores, i.e. does not respond to A’s SYN+ACK packet

• C sends an acknowledgement to A pretending to be B

One would argue, however, that C cannot properly acknowledge A because it
does not receive A’s initial sequence number.

The algorithm for choosing the initial sequence number gives unrelated hosts
a fair chance of guessing it. Specifically, A selects the initial sequence number
based on a clock value at the time of connection. RFC 793 specifies that this
clock value be incremented every 4 µs; common Berkeley implementations once
simplified this to incrementing by 250000 once per second.

(a) Given this simplified increment-once-per-second implementation, explain
how C could masquerade as B in at least the opening of a TCP connection.

ANSWER:

1. C connects to A, and gets As current clock-based sequence number SN1

2. C sends a SYN packet to A, pretending to be B

3. A sends SYN+ACK, with SN2 to B, which we are assuming is ignored

4. C makes a guess at SN2, eg SN1 plus some suitable increment (RTT+t
seconds passed, see diagram below), and sends the appropriate ACK to A
(pretending to be B), along with some data that has some possibly malign
effect on A

5. C does nothing further, and the connection either remains half-open in-
definitely or else is reset, but the damage is done

(b) Assuming real RTT can be estimated to within 40 ms, about how many
tries would you expect it to take to implement the strategy of part (a) with the
unsimplified “increment every 4 µs” TCP implementation?

ANSWER: In one 40ms period there are 40ms/4µsec = 10000 possible se-
quence numbers; we would expect to need about 10000 tries.



SN1

A C

SN2

B

t


