
CSCI 690 Computer Networks

Homework 7

Solution

Saad Mneimneh

Problem 1: A simple AIMD
Consider a simple congestion control algorithm that uses linear increase and
multiplicative decrease (no slow start). Assume the congestion window size is
in units of packets rather than bytes, and it is one packet initially.

(a) Give a detailed description of this algorithm.

ANSWER: Initially, cwnd = 1

on ACK : cwnd = cwnd + 1/cwnd

on timeout : cwnd = min(1, cwnd/2)

(b) Assume that for every group of packets sent, only one cumulative ACK is
returned. Plot the congestion window size as a function of time (units of RTT)
when the following packets are lost: 9, 25, 30, 38, and 50. For simplicity assume
the timeout is equal to 1 RTT.

RTT 1 2 3 4
sent 1 2-3 4-6 7-10

Packet 9 is lost. cwnd is reduced to 2.

RTT 5 6 7 8 9
sent 9-10 11-13 14-17 18-22 23-28

Packet 25 is lost. cwnd is reduced to 3.

RTT 10 11
sent 25-27 28-31

Packet 30 is lost. cwnd is reduced to 2.

RTT 12 13 14
sent 30-31 32-34 35-38

Packet 38 is lost. cwnd is reduced to 2.

RTT 15 16 17 18
sent 38-39 40-42 43-46 47-50

Packet 50 is lost. cwnd is reduced to 2.

RTT 19
sent 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3

4

5

6

7

(c) What is the effective throughput achieved for this connection if each packet
is 1KB and the RTT is 100ms?

ANSWER: It took 19 RTTs to send 50 packets, i.e. 50KB. The effective
throughput is 50× 1024× 8/1.9 ≈ 215 Kbps.

(d) Explain why the changing cwnd each time an ACK arrives using the follow-
ing formula

cwnd = cwnd + MSS × (MSS/cwnd)

is not correct for such algorithm (or in general).

ANSWER: The formula is accurate if each new ACK acknowledges one new
MSS-sized segment. However, an ACK can acknowledge either small size pack-
ets (smaller than MSS) or cumulatively acknowledge many MSSs worth of data.

Problem 2: Fairness index
Suppose a congestion control scheme results in a collection of flows that achieve
the following throughput rates: 100 KBps, 60 KBps, 110 KBps, 95 KBps, and
150 KBps.

(a) Calculate the fairness indes for this scheme.

ANSWER: (100+60+110+95+150)2

5(1002+602+1102+952+1502) = 0.9

(b) Add a flow with throughput rate of 1000 KBps to the above, and recalculate
the fairness index.

ANSWER: (100+60+110+95+150+1000)2

6(1002+602+1102+952+1502+10002) = 0.3

Problem 3: MIMD (optional)
This problem is inspired by a question asked in class. Consider an conges-
tion control algorithm that always uses slow start to increase the window size.
Therefore:

on ACK : cwnd = cwnd + 1

on timeout : cwnd = cwnd/2

(a) Under what circumstances is the fast retransmit mechanism not effective?

ANSWER: Fast retransmit uses 3 dupacks instead of a timeout to declare a
lost packet. When the window size is very large (compared to the ideal size),
many packets will be lost. Therefore, at some point, dupacks will stop being
generated and we must wait for a timeout.

(b) Suppose that the timeout is equal to α×RTT (in practice α could be as large
as 20). Show by constructing an example that the effective throughput of this
congestion control algorithm could be as low as (assuming a unit of bandwidth)

2
α + 1

ANSWER: We will explore the idea mentioned in part (a). With MIMD, it
is possible for the window size to double in one RTT. If the window size was
ideal, this doubling will cause half of the packets to be lost. Therefore, there
will be no dupacks and we have to wait for the timeout to detect the loss. For
simplicity, we will assume that the doubling and halfing is intantaneous.
The numbers in the figure below indicate the batches of ideal window sizes that
succeed. Therefore, batch 1 requires 1 RTT, batches 2 and 3 (having failed on
batch 3 upon doubling) require (1+α) RTTs, etc... We can see that half the
batches require 1 RTT and the other half require α RTTs. Ideally, however, each
batch should require 1 RTT to transmit. Therefore, the effective throughput is

B ×RTT

0.5×B ×RTT + 0.5×B × αRTT
=

2
1 + α

ideal

αRTT

RTT

1 2,3 3 4,5 5 6,7 7 8,9 9

Problem 4: Random Early Detection
Consider a RED gateway with MaxP = 0.02, and with an average queue
length halfway between the two thresholds. Recall that p is computed as
Qavg−Qmin

Qmax−Qmin
MaxP and pcount = p

1−count×p , where count is the number of pack-
ets that are queued since the last drop while Qmin ≤ Qavg ≤ Qmax.

(a) Find the drop probability pcount for count = 1 and count = 50.

ANSWER: Since Qavg is half way between the two thresholds, then Qavg =
(Qmin + Qmax)/2. Therefore, p = 0.5MaxP = 0.01. p1 = 0.01

1−0.01 = 0.01
0.99 =

1/99 = 0.01. p50 = 0.01
1−50∗0.01 = 0.02.

(b) Calculate the probability that none of the first 50 packets are dropped. Note
that this is (1− p1)× . . .× (1− p50).

ANSWER:
(1− p1)(1− p2) . . . (1− p50)

(1− 0.01
0.99

)(1− 0.01
0.98

) . . . (1− 0.01
0.5

)

(
0.98
0.99

)(
0.97
0.98

) . . . (
0.49
0.5

) =
0.49
0.99

= 0.495

Problem 5: Fair Queueing
Consider a router that is managing three flows, on which packets of constant
size arrive at the following real times:

flow A: 1, 2, 4, 6, 7, 9, 10

flow B: 2, 6, 8, 11, 12, 15

flow C: 1, 2, 3, 5, 6, 7, 8

All three flows share the same outbound link, on which the router can transmit
one packet per time unit (therefore, we can think of every packet having a length
of 1, and the router having a service rate c = 1). Assume there is an infinite
amount of buffer space.

(a) For each packet, give the real time when it is transmitted by the router if
the router is an ideal round robin system.

(b) For each packet, give the real time when it is transmitted by the router if
the router implements Fair Queueing. Ties are to be resolved in the order A,
B, C.

PS: there will be quite an amount of bookkeeping. So try to keep track of
information using a table to compute V (t), ak

i , Sk
i , F k

i , and which packets are
still in queues, etc...

t|arrivals|V (t)|#flows(ideal sys)|Fp|tnext|sent|A’s queue| B’s queue|C’s queue
———————————————————————————————————

The above table shows how Fair Queueing simulates the ideal system. The first
column t denotes the real time. The second column arrivals shows the packet
arrivals. The third column V (t) denotes the virtual time, as described in class,
this is computed as follows:

V (tj) = V (tj−1) +
tj − tj−1

flows

where the number of flows is taken from column 4 one row before. This is the
number of flows in the ideal system during (tj−1, tj). The number of flows is
updates every time there is an arrival, and every time some packets leave the
ideal system (we keep track of this using tnext). The fifth column F computes
the finish time of every packet. This is as usual max(F k−1 + V (t)) + 1 (every
packet has length 1), where F k−1 is the finish time of the previous packet of the
same flow. Column six tnext computes the next time (real time) when a packet
(or more) will leave the ideal system.

tnext = ([Fmin − V (t)] ∗ (# flows) + t)/c

where Fmin is the smallest finish time greater than V (t) (i.e. Fmin − V (t) is
always positive). When time t is reached such that t is equal to some tnext, we
know that some packets will leave. These are the packets that have their finish
time equal to V (t). At this point, we also update the number of flows. Finally,
every time the Fair queueing scheduler picks the packet with the smallest finish
time to transmit. The rest of the columns show the packet sent and the state
of the three queues.

ANSWER to part (a): The tuples (sent, t+1) show the real time when each
packet leaves the Fair queueing system.

ANSWER to part (b): To find when packets leave the ideal system, we look
at the virtual times V (t) and map their corresponding real time.

packets V(t) real time
A1, C1 1 3.5
B1 1.5 5
A2, C2 2 6
A3, B2, C3 3 9
A4, B3, C4 4 12
A5, B4, C5 5 15
A6, B5, C6 6 18
A7, B6, C7 7 21

