
Computer Networks

Introduction

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

“dit dit dit dah”
Beethoven’s 5th symphony

1 Historical overview

Primitive forms of data networks have a long history. After all, it is all about com-
munication. Early societies used smoke signal to communicate information. In the
19th century, telegraphy was used as means of communicating messages. Messages
were manually encoded into strings of symbols and then manually transmitted and
received. When necessary, the messages were manually relayed at intermediate points.
Example of such manual encoding and transmission is the Morse code, created by
Samuel Morse in the 1830s. A statue of Samuel Morse is placed at Inventor’s Gate on
the east side of Central Park on 72nd street in New York. Morse code used standard-
ized sequences of short and long marks or pulses [commonly known as dots (dits) and
dashes (dahs)] to encode letters, numerals, and punctuation marks. For instance the
Morse code for the letter V is ...- 1.

Figure 1: Morse code

1The four opening notes of Beethoven’s fifth symphony, named Victory, represent the Morse
code for the letter V (accidentally, also 5 in Roman numerals): three short notes followed by a
long note. This is just a coincidence. Beethoven died in 1827 before Morse invented his code.

1



In modern terminology, the dots and dashes are equivalent to bits! For instance,
a dot corresponds to a 0 and a dash corresponds to a 1. Therefore, we can say that
telegraphy used binary symbols.

In the 1050s and 1960s, central computers were connected to terminals by links
to form time-sharing real-time processing systems. This constitute the first form of
modern computer networks that we are familiar with today.

terminal

central
processor

printer

Figure 2: A time-sharing system with a central processor. Tasks from the
terminals are rotated in and out of execution.

Later on, multiplexers were used to collect all the traffic from a set of peripherals
in the same geographic area and send it on a single link to the central processor. To
free the processor from the burden of handling communication, a special processor,
called front end, was also developed to control communication.

terminal

central
processor

printer

front
end

Figure 3: Multiplexers and front ends added

In these networks, and in contrast to telegraphy, communication is automated.
However, while such a system can be referred to as a computer network, it is simpler
to view as one computer with remote peripherals. Real networks emerged in the 1970s
when ARPANET and SYMNET were introduced. These were the first large scale
general purpose computer networks connecting geographically distributed computer
systems, users, peripherals, etc...



CPU

subnet

terminal

personal
computer

CPU

Figure 4: A computer network

Therefore, instead of having a computer as the center of the network, the subnet
(communication part of the network) becomes central. Inside the subnet we have a set
of nodes (these are usually computers in their own right), various pairs of which are
connected by communication links. Outside the subnet, various computers, databases,
terminals, and other devices, are connected via the subnet. A message originates at
an external device (the sender), passes through the subnet from one node to another
on the links, and goes out to the external receiver.

The subnet contains a somewhat arbitrary placement of links between nodes. This
placement, often called topology, is typical of wide-area networks WANs, i.e. net-
works covering more than a metropolitan area. In contrast, local-area networks LANs,
cover few square kilometers or less e.g. building or department, and usually have more
restricted topologies, including ring, bus, and star. Today, bus topology, having been
standardized as Ethernet, is probably most popular.

(a) (b) (c)

Figure 5: LAN topologies: (a) ring, (b) bus, (c) star

Since the 1970s, there have been an explosive growth in the number of WANs
and LANs including ARPANET, TYMNET as WANs and Ethernet and token ring
networks as LANs. All these networks needed to connect and communicate. In the
1980s many networks started to connect to each other as in Figure 6.

2 A flavor of network protocols

For a network to function properly, it is important to establish rules by which network
activities are conducted. Such rules are known as protocols. For instance, one of the
major problems for any network protocol is to coordinate the transmission of messages



CPU

subnet

terminal

personal
computer

WAN

LAN

CPU

LAN

Figure 6: WANs and LANs

among computers in the network. If all computers insist on transmitting their own
messages at the same time, without helping in relaying other messages, no message
will be delivered. We will briefly describe two network protocols that address this
issue in LANs: Token ring and Ethernet. We will study both of these protocols later
on in much more detail.

2.1 Token ring

IBM developed in 1970 the token ring protocol. In this protocol, computers are on
a ring topology, and the messages are transmitted and relayed in only one common
direction (either clockwise or counterclockwise). Each message has information about
the sender and the intended receiver. When a message reaches its destination, the
receiver machine keeps a copy of it, but continues the act the of relaying the message.
Eventually, the message will reach back to the originating machine, at which point,
the machine knows that the message must have been delivered and stops relaying it.

This scheme depends on the machines cooperation. If a machine insists on con-
stantly transmitting messages of its own rather than relaying those of other machines,
nothing will be accomplished. This is where the most important part of the protocol
comes in. A unique bit pattern (to distinguish it from any other message), called a
token, is passed around the ring. Possession of this token gives the machine the right
to transmit its own message. Normally, machines relay the token in the same way they
relay messages around the ring. But when a machine wants to transmit a message, it
grabs the token, and sends its own message instead. Then this machine will wait until
it sees its own message again before releasing the token and relaying it to the next
machine on the ring. Therefore, since no other machine can posses the token during
that time, eventually the message will reach back to its sender (all machines are just
relaying). We can argue that eventually every message will be delivered because every
machine will have a chance to grab the token.

2.2 Ethernet

Ethernet was developed for a network with bus topology. In Ethernet, the right to
transmit messages is controlled by a collection of protocols known as Carrier Sense
and Multiple Access with Collision Detection CSMA/CD. With this protocol, each
message is broadcast on the bus to all machines. But every machine keeps those



messages that are only addressed to it. To transmit a message, each machine “sense
the bus”, and waits until it is silent, then beings transmission. If another machine
begins transmitting, both will “detect a clash” and pause for a brief random (why?)
period of time, and then retry.

3 Networks in modern terminology

With LANs and WANs joining together, network connectivity occurs at many different
levels. Therefore, we can define a network recursively:

• two or more nodes connected by a physical link

– point-to-point

– multiple access (like Token Ring or Ethernet)

• two or more networks (clouds) connected by a node (gateway/router)

cloudcloud cloudcloud

router

host

Figure 7: Networks as clouds

Nodes inside a cloud implement the network function e.g. switching as described
in the next section.

Conceptually speaking, one could regard a network of networks as a bigger network.
Practically speaking, however, a network of networks is more complicated then just
a network of nodes. Not all networks are created equal :) and, therefore, networks
evolve differently. They have different conventions and control algorithms for handling
data (later we will talk about packet formats, message forwarding mechanisms, and
routing). Therefore, bridges and gateways (also called routers) were used to handle
the inhomogeneity. Bridges are used to connect LANs, while gateways are used to
connect WANs. This distinction has to do with routing and the level at which the
networks are being joined together (we will see this later on).

bridge

WAN

WAN gateway
or router

Figure 8: Bridges and gateways



4 Messages, packets, and sessions

So far we have deliberately used the term “messages” to signify units of communica-
tion. But what constitute a unit of communication? The answer is: “it depends”.
From the standpoint of a network user, a message is a single unit of communication.
For that user, receiving part of the message would be worthless. However, on the
communication link, the message is just a sequence of bits. Moreover, in most net-
works, messages are broken into smaller chunks called packets. Therefore, one should
distinguish between a message and its representation. A message carries a specific
information that does not change; however, that message may undergo several trans-
formations as it travels from sender to receiver, e.g. broken into packets, compressed,
encrypted, etc...

Messages between two users occur as sequence in a larger transaction, such se-
quence of messages or transaction is called a session. We can think of a session as a
logical channel over which application level processes are communicating, e.g. a user
sending (through some database client application) messages to update a database
(database server application).

application 1

application 2

session

Figure 9: Session

At this application level, one important question is what service should the session
provide? The service provided must of course depend on the application needs. For
instance, should we allow messages to be lost? Should we receive messages in order?
Regardless of the different guarantees, we may put sessions in two categories.

Typically, a setup procedure is required to initiate the session, in this case the
session is called a connection. In other networks, no such setup is required, and each
message is treated independently; this is called a connectionless session. Moreover,
properties of the session are also affected by how messages (or packets) are forwarded
(switching technique) in the network. We have two main switching techniques:

• circuit switching

• store-and-forward switching

– datagram

– virtual circuit



5 Circuit switching

When a session is initiated (connection) it is allocated a given rate λ in bits per second
(bps). A path is then chosen from source to destination, and each link on this path
allocates the desired portion r of its capacity C to the session. If capacity is used,
future sessions are blocked, e.g. phone network.

some capacity
allocated

sender receiver

Figure 10: Circuit switching

Due to this resource dedication, circuit switching has the advantage of guaranteed
delivery of messages with fixed delays. Circuit switching, however, is rarely used in
computer networks because typical sessions tend to have a short burst of high activity,
followed by long inactive periods. Such sessions are called bursty or low factor sessions.
Therefore, circuit switching would waste the allocated rate during the time in which
the session is inactive and not sending any packets.

session starts session ends

burst

inactive period
allocated rate wasted

Figure 11: Bursts and inactive periods

x2x1 x3 x4

t1 t2 t3

arrival

delivery

Figure 12: Example session activity

Let λ be the message arrival rate, i.e. 1/λ = E[ti], r be the allocated rate, and
L be the expected message length. Then L/r = E[Xi] is the expected delay over a



link. If the allowed delay is T , then we must have L/r < T (at least need to travel
one link). But if T << 1/λ, then L/r << 1/λ i.e.

Lλ

r
<< 1

Therefore, the link is idle most of the time. Here’s an example:
L = 1000 bytes (= 8000 bits)
λ = 1 message/sec
L/r < 0.1 (delay requirement, so r > 80000 bps)
Lλ/r < 0.1 = 10%

6 Store-and-forward switching

In store-and-forward, aka packet switching, one packet is transmitted at a time using
the full capacity of the link. The links are still shared between different sessions, but
the sharing is done on a need basis, rather than by a fixed allocation of rates. Therefore,
if a packet needs to use a link, and that link is not available because another packet
is being transmitted, then the packet must wait. For this reason, queues or buffers
are used at every node. A packet waits in the buffer until the link is available (hence
the name store-and-forward).

Figure 13: Buffer in packet switching

Although queuing delays are hard to manage and control, it can be shown that
using communication link on a need basis often reduces delay in networks relative
to circuit switching. One of the major issues in buffered networks is that buffers
may become overloaded. Controlling the buffers might involve the overloaded node
to send to the offending inputs (those who are sending a lot of packets) some control
information telling them to slow down (this is one technique for congestion control).
But even then, a considerable number of packets may already be in the subnet on its
way to the node. When reaching the buffer, those packets may be dropped as a result
of buffer overflow.

Store-and-forward can be either connectionless, or can establish a connection. Con-
nectionless store-and-forward is known as datagram. In datagram, routes are chosen
on a packet by packet basis. Therefore, there is an issue of packet ordering: Packets
travel individually on different paths from the source to the destination and may arrive
in the wrong order, e.g. IP (Internet Protocol). Since there is no established path,
another issue with connectionless store-and-forward is routing, which is to determine
how packets should travel from the source to the destination (we will see this when we
study routing issues in the Internet). For instance, since no path is established in IP,
the source and destination addresses (IP addresses) must be included in each packet,
i.e. a 2dlog ne bit overhead (where n is the number of nodes in the network).



If, on the other hand, a connection is established with store-and-forward switching,
it is called virtual circuit switching. This is a combination of both approaches
(circuit switching and store-and-forward switching). In virtual circuit switching, a
particular path is set up when the session in initiated and is maintained during the
life of the session. But the capacities of the links on that path are shared by sessions
on a need basis, rather than by fixed allocation of rates. This is why is it called virtual
circuit switching; the path is not really reserved.

In circuit switching, each link can be visualized as being shared by a set of “virtual
channels” VCs. When the session is set up, a path is established by assigning, on each
link of the path, one unused VC. Each node maintains a mapping (a table) of VCs.

3

6 2

5 8

VC13

VC7

VC7
VC4

Link(5,8)

VC3

VC3

Link(3,5)

Link(8,5) Link(8,2)

Node 5 table
(3,5) VC13 → (5,8) VC7
(3,5) VC7 → (5,8) VC4
(6,5) VC3 → (5,8) VC3

Figure 14: Virtual channels VCs

Therefore, global addresses are needed to establish the virtual circuit when the
session start. But once established, local VC numbers can be used for routing. In the
worst case we have n(n− 1) sessions, and a

dlog n(n− 1)e < dlog n2e = d2 log ne ≤ 2dlog ne

bit overhead is needed to store VC numbers; however, generally virtual circuit requires
less overhead. Examples are X.25 and ATM.



The following figure provides a summary of the switching techniques with their
advantages/disadvantages.

Internet

Switching technique

Circuit switching Store-and-forward

Datagram Virtual circuit

- connection oriented
- timely and orderly delivery of messages
- quality of service QoS
- inefficient

- connectionless
- our of order delivery of packets

- connection oriented
- orderly delivery of packets

- no QoS (best effort)
- efficient

Figure 15: Switching summary

References

Dimitri Bertsekas and Robert Gallager, Data Networks
Larry Peterson and Bruce Davie, Computer Networks: A Systems Approach


