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1 Introduction

We now consider a simple queueing system called M/M/1. This terminology
arises from a standard notational system in queueing theory, first suggested by
David Kendel in 1953. The three parts of the notation describe:

• the inter-arrival time distribution,

• the service time distribution, and

• the number of servers

The letter M stands for memoryless, i.e. the Poisson process with expo-
nential distribution. Other possibilities include D for deterministic inter-arrival
times, and G denoting a general distribution of inter-arrival times. Therefore,
the M/M/1 queueing system consists of customers arriving according to a Pois-
son process with rate λ, and one server with a service time per customer that
is exponentially distributed with rate µ. This of course does not completely
describe the system; for instance, what is the size of the queue where customers
wait for service? We will assume an infinite queue for now as depicted below:
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Figure 1: The M/M/1 queueing system for packets (server is transmitter)

We already know a lot about this system from simple application of Little’s
theorem. For instance, N = λT , where N is the average number of customers in
the system and T is the average delay per customer. Similarly, NQ = λW , where
NQ is the average number of customers in the queue (i.e. not being currently
served), and W is the average waiting time in the queue per customer. Moreover,
ρ = λ/µ, where ρ is the average number of customers being served, which can
be also interpreted as the server utilization, throughput, or efficiency. 1

Note also that N = NQ + ρ and T = W + 1/µ. Therefore, it is enough to
determining one of N , T , NQ, and W , to determines all. One approach would
be to first determine N .

2 Modeling the system as a Markov chain

An important consequence of the memoryless property is that it allows us to use
the theory of Markov chains, named after the mathematician Andrey Markov.
A Markov chain consists of a set of states (possibly infinite), with given proba-
bilities of transitions Pij from state i to state j in one time step. For instance,
if we let Xk be the state at time kδ for a fixed δ and k = 0, 1, 2, . . ., then

Pij = P (Xk+1 = j|Xk = i,Xk−1 = ik−1, . . . X0 = i0)
= P (Xk+1 = j|Xk = i) ∀k

In other words, conditioned on Xk, Xk+1 is independent of the past. For
the M/M/1 queing system, we can assume that Xk = Nk is the number of
customers at time kδ. Therefore, our (infinite) set of states consists of the states
0, 1, 2 . . .. The fact that arrivals and service are modeled by Poisson processes
(memoryless) and are independent means that a Markov chain is an appropriate
model for M/M/1. For a small δ (ignoring the o(δ) terms):

P (Nk+1 = n|Nk = n) ≈ P (0 arrivals, 0 departures) ≈ (1−λδ)(1−µδ) ≈ 1−λδ−µδ

P (Nk+1 = n + 1|Nk = n) ≈ P (1 arrival, 0 departures) ≈ λδ(1− µδ) ≈ λδ

P (Nk+1 = n− 1|Nk = n) ≈ P (0 arrival, 1 departures) ≈ (1− λδ)µδ ≈ µδ

P (|Nk+1 − n| ≥ 2|Nk = n) ≈ 0

1Note that ρ ≤ 1 because the server can serve at most one customer at a time. However,
λ and µ are unconstrained! How can we explain this?
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Figure 2: Markov chain of M/M/1

We would like to find N , the expected number of customers in the system
at steady state

N =
∞∑

n=0

pnn

where pn is the steady state probability of being in state n

pn = lim
k→∞

P (Nk = n|N0 = i) i = 0, 1, 2 . . .

But, is there a steady state? To answer this question, we need a little bit of
theory.

3 A little bit theory

A Markov chain is irreducible iff the directed graph formed by the chain is
connected, i.e. given any two states i and j, there is a path from i to j. Moreover,
a state i is periodic iff there is a path from i to i and the length of every such
path is a multiple of some integer d > 1 (d is said to be the period). A Markov
chain is aperiodic iff none of its states is periodic.

Given an irreducible and aperiodic Markov chain, there are two possibilities
for pj = limk→∞ P (Xk = j|X0 = i):

• pj = 0 for all j, in which case the chain has no steady state distribution

• pj > 0 for all j, in which case this is the unique steady state distribution
of the chain, and it satisfies the equations

∑

j

pj = 1, pj =
∑

i

piPij (why?)

where Pij is the transition probability from state i to state j

4 Analysis of M/M/1

According to the above, the markov chain for M/M/1 is irreducible and aperi-
odic. If a steady state exists, the steady state equation for p0 is given by:

p0 = p0(1− λδ) + p1µδ + o(δ)



Similarly, the steady state equation for pn for n > 0 is given by:

pn = pn(1− λδ − µδ) + pn−1λδ + pn+1µδ + o(δ)

Since limδ→0 o(δ)/δ = 0, dividing by δ and taking the limit as δ goes to 0,
we have:

pn

pn−1
=

λ

µ
= ρ ∀n > 0

Since
∑

n pn = 1 and pn = ρnp0, we have:

p0

∞∑
n=0

ρn = 1

Note that the above sum converges only for ρ < 1, i.e. for λ < µ. If ρ = 1
i.e. p0 = p1 = p2 = . . ., all states are equally likely and hence pn = 0 ∀n
(no steady state distribution). If ρ > 1 i.e. p0 < p1 < p2 < . . ., further states
are more likely (no steady state distribution since the queue is infinite). When
ρ < 1,

∞∑
n=0

ρn =
1

1− ρ

p0 = 1− ρ

pn = ρn(1− ρ)

This result is consistent with the meaning of ρ from Little’s theorem: the
expected number of customers being served. Since at most one customer can
be served, we have:

ρ = P (system is empty) · 0 + P (system is not empty) · 1
= p0 · 0 + (1− p0) · 1 = 1− p0

Now the expected number of customers in the system can be computed:

N =
∑∞

n=0 pnn

= ρ(1− ρ)
∑∞

n=0 nρn−1

= ρ(1− ρ) ∂
∂ρ

∑∞
n=0 ρn

= ρ(1− ρ) ∂
∂ρ

1
1−ρ

= ρ
1−ρ = λ

µ−λ



From Little’s theorem, the expected delay per customer is:

T =
N

λ
=

1
µ− λ

Therefore, the expected waiting time (in queue) is:

W =
1

µ− λ
− 1

µ
=

ρ

µ− λ

and the expected number of customers in the queue is

NQ = λW =
ρ2

1− ρ

We can also verify that
N = NQ + ρ

The parameter ρ can be interpreted as the throughput of the system at
steady state. If ρ ≥ 1, the steady state solution does not exists, but the server
is expected to be alwasy busy (λ > µ). Therefore, we can define min(1, ρ) as
the throughput of the system as illustrated in the figure below:

1

 1  ρ

throughput

Figure 3: Throughput curve of M/M/1

Similarly, the delay of M/M/1 is illustrated in the figure below:

 1  ρ
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 1/µ

Figure 4: Delay curve of M/M/1

The best operating point of the system is when throughput is high and delay
is low. If we define the power as the throughput divided by the delay, we have
the following:



power =
throughput

delay
= λ(1− λ/µ)

It is easy to see that power is maximized when λ = µ/2 (ρ = 1/2):
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 1/2

Figure 5: Power curve of M/M/1

5 Example 1 of M/M/1: a fast food restaurant

Conisder a fast food restaurant with Poisson arrivals at a rate of 100 customers
per hour. The service time is exponentially distributed with an average of 30
seconds.

• λ = 100

• µ = 1/0.5 = 2 customers/min = 120 customers/hour

• A customers spends on average T = 1
µ−λ = 1

20 hours = 3 min until
completely served

• A customer waits in line on average W = T − 1/µ = 3− 0.5 = 2.5 min

• The average number of customers in the restaurant at any time is λT =
100 1

20 = 5

• The throughput (servant utilization) is ρ = λ/µ = 5/6

6 Example 2 of M/M/1: Packet switching vs.
circuit switching

Consider m sessions each with a Poisson arrival at a rate of λ/m. Packet sizes are
exponentially distributed with an average of L bits. The line has a bandwidth
of µ bps.



• The transit time is packet size
µ , thus transit times are exponentially dis-

tributed with an average of L/µ

• Packet switching (Poisson processes of m sessions are merged)

T =
1

µ/L− λ

N = λT =
λ

µ/L− λ

• Circuit switching (each session is given 1/m of link bandwidth)

T =
1

µ/mL− λ/m
=

m

µ/L− λ

N = (λ/m)T =
λ

µ/L− λ
(per session)

• Delay and number of packets are both multiplied by m in circuit switching
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