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Sorry, I have to drop you!

1 Introduction

We now re-examine the M/M/1 queing system under the more realistic assump-
tion of a finite queue size. Therefore, we assume that the queue can hold up to
m packets. If a packet arrives and the queue is full, the packet is simply dropped
from the system. The analysis of M/M/1 under this setting will give us some
insight into the behavior of networks in general, and an idea for a congestion
control algorithm used by TCP.

2 The Markov chain

For this new setting, we have a finite Markov chain with a set of states {0,1,2,...m}
and transional probabilities as illlustrated in Figure 1.

As before, we need to find the steady state probability p,, of being in state
n (system has n packets). The steady state equations are as follows (refer to
Figure 1):

po = po(l = A6) + p11é + 0(0)
Pm = Pm—140 + pm(1 — pd) 4 o(9)
Pn = Pn—1A0 + pu(1 = A6 — pd) + ppy1pd +0(6) Vn #0,m
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Figure 1: Markov chain for finite M/M/1
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Since limgs_o 0(d)/d = 0, taking the limit as J goes to 0 gives:
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Ifp=1,>" p"=m+1andp, = ﬁ ¥n (all states are equally likely).
Note that p,, is the probability of dropping a packet (because of the PASTA
property of Poisson arrivals). When m — oo and p < 1, p,, — 0 (never drop,
inifite queue). When p — oo, p,, — 1 (always drop).

Now we can compute N, the expected number of packets in the system.
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Ifp=1p, = ﬁﬂ Vn. Then,

N =



When m — oo and p < 1, N — £ (as before). When p — oo, N —
m+ 1 —1=m (queue always full).

Packets that are not dropped arrive according to a Poisson process with rate
A(1—pm) (obtained by a splitting of the original Poisson process as seen below).
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Figure 2: Splitting of a Poisson process
Therefore, by Little’s theorem
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3 Throughput, delay, and power

By Little’s theorem, the expected number of packets being served (throughput)
is

)‘(1 - pm)

I

When p > 1, however, the throughput cannot be more than (1—p,, ), because
(1 — psm) is the fraction of packets that are not dropped. Therefore,

:/J(]-*pm) <1

throughput = min(p(1 — pi), 1 — pm)

Compare this to the infinite queue case where p,, = 0 and the throughput
is given by min(p, 1).
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Figure 3: Throughput curve for finite M/M/1
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Figure 4: Delay curve for finite M/M/1
The dashed region shows desired operating region for power=throughput/delay.

4 A flavor of congestion control

To summarize what we have seen so far (refer to the throughput and delay
curves above):

e Throughput increases with p until it reaches a maximum and then starts
decreasing rapidly (this is when we have considerably high droping prob-
ability)

e Delay start increasing considerably when throughput approaches 1

e Best operating point is to keep throughput around 50%

Therefore, a possible congestion control algorithm would be the following;:

e Upon detection of a loss (a sign that we have approached a throughput
close to 1), decrease the rate (reduce window size) by a factor of 2

e Increase rate slowly until detecting another loss



We are going to see later that TCP employs basically a similar congestion
control algorithm.

5 A note on Poisson arrivals

Is it always justifiable to assume Poisson arrivals? To answer this question,
consider the following example of two queues in tandem.
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Figure 5: Two queues in tandem

If packets arrive according to a Poisson process (arrival), and packet lengths
are exponentially distributed (service), the first queue can be modelled as an
M/M/1 queuing system. However, the second queue cannot! For instance,
the inter-arrival times at the second queue are strongly correlated with packet
lengths (service). In particular, the inter-arrival time of two packets at the
second queue is greather than or equal to the transmission time of the second
packet at the first queue. Therefore, long packets typically wait less time at the
second queue.

If the second server were to receive a substantial amount of additional ex-
ternal Poisson traffic, the dependence of inter-arrival times and service times
would be weakened. Therefore, it is often appropriate to adopt an M/M/1
model (Kleinrock independence approximation) for each server when:

e we have Poisson arrivals at entry points

packet lengths are nearly exponentially distributed

the network is densely connected

e we have moderate to heavy traffic loads

Under these assumptions, if link (¢,7) has a total rate \;;, then (from
M/M/1):
ij — Aij

The average delay per packet in the entire system (Little’s theorem) is (ig-
noring propagation delay)

Nij =

225 Nij
S

where 7 is the total arrival rate in the system. If the propagation delay d;; for
link (4, 7) is taken into account, then:

T =



>i; (Nij + Aijdsj)
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