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1 Introduction

We now consider a queuing system where the customer service times have a
general distribution - not necessarily exponential as in the M/M/1 system. We
denote such a system by M/G/1. In M/G/1, customers still arrive according
to a Poisson process with rate λ. We assume that customers are served in the
order they arrive (FIFO) and that Xi is the service time of the ith customer.
We assume further that Xi are IID and independent of the interarrival times.
Let

X = E[X] =
1
µ

= Average service time

X2 = E[X2]

The goal is to derive the Pollaczek-Khinchin (P-K) formula:

W =
λX2

2(1− ρ)

where W is the expected waiting time in the queue (we assume here an infinite
queue) and ρ = λ/µ = λX.
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2 The Pollaczek-Khinchin (P-K) formula

We will derive the P-K formula using the concept of mean residual time. While
this derivation obtains only the system averages, it is simpler and more insightful
than other derivations that can give a probability distribution of the system
occupancy. Denote the following:

• Wi = waiting time in queue for customer i

• Ni = number of customers in queue seen by customer i upon arrival

• Ri = residual service time seen by customer i, i.e. the remaining time
until the departure of the customer already being served upon the arrival
of customer i

Then (FIFO),

Wi = Ri +
i−1∑

j=i−Ni

Xj

Assuming that Xi−Ni , . . . , Xi−1 are independent of Ni,

E[Wi] = E[Ri] + E[Ni]E[Xj |Ni] = E[Ri] + E[Ni]E[X] = E[Ri] + XE[Ni]

Let W , R, and NQ be the corresponding limits as customer index i → ∞
or time increases to infinity. We assume that these limits exist. Then, by the
PASTA property of Poisson arrivals, these are also the averages seen by an
outside observer:

W = R +
1
µ

NQ

By Little’s theorem, NQ = λW , so

W = R + ρW ⇒ W =
R

1− ρ

We now compute R by a graphical argument.
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Figure 1: Residual service time



Let R(t) be the residual service time as a function of time, and let t be a
time for which R(t) = 0. As we can see from the above figure,

Rt =
1
t

∫ t

0

R(τ)dτ =
1
t

m(t)∑

i=1

1
2
X2

i =
m(t)

t

∑m(t)
i=1

1
2X2

i

m(t)

Taking the limit as t →∞, and applying the law of large numbers (we also
implicitly assume that time averages can be replaced by ensemble averages):

R =
1
2
λX2

Therefore,

W =
λX2

2(1− ρ)

• M/G/1 (general): W = λX2

2(1−ρ)

• M/M/1 (memoryless): X2 = 2/µ2 ⇒ W = ρ
µ(1−ρ)

• M/D/1 (deterministic): X2 = 1/µ2 ⇒ W = ρ
2µ(1−ρ)

Althoug we assumed FIFO, the P-K formula is valid for any order of sevice as
long as the order is independent of the service times of individual customers (e.g.
serving smaller jobs first or larger jobs first would make the order dependent on
service times).

3 Example 1: M/G/1 system

• What is the probability that the system is empty?

– By Little’s theorem, the average number of customers in service is
λX

– P (systemisempty) = 1− λX

• What is the average time I (for idle) between busy periods?

– consider the end of a busy period, since arrivals are Poisson (mem-
oryless), the next arrival is exponentially distributed (which signals
the beginning of next busy period)

– I = 1/λ

• What is the average time B of a busy period?

– B
B+I = λX

– B = X
1−λX

• What is the average number of customers served during a busy period

– from above 1
1−λX



4 Example 2: sliding window ARQ

• Assume Go back n with one sided error

– probability of error is p

– ACKs always arrive

– timeout = n (for retransmissions)

• When packet i is successfully transmitted, packet i + 1 is successfully
transmitted 1 + kn time units later with probability (1− p)pk

• Transmitter’s queue behaves like M/G/1

– P (X = 1 + kn) = (1− p)pk

– X = 1 + np
1−p , X2 = 1 + 2np

1−p + n2(p+p2)
(1−p)2 (after some calculation)

– A packet waits in window on average W = λX2

2(1−λX)

5 M/G/1 with vacations

Suppose that at the end of each busy period, the M/G/1 server goes on “va-
cation” for some random interval of time. If the system is still idle at the
completion of a vacation, a new vacation start immediately. This is useful for
modeling slotted systems as we will see in the following section. Let V1, V2, ...,
Vl(t) be the durations of vacations at up to time t. The following formula is still
valid:

W =
R

(1− ρ)

where R is now the residual time for completion of the service or vacation
in process when the customer arrives.

We can compute R using a similar graphical argument as before.

Rt =
∫ t

0

R(τ)dτ =
1
t

m(t)∑

i=1

1
2
X2

i +
1
t

l(t)∑

i=1

1
2
V 2

i

Rt =
m(t)

t

∑m(t)
i=1

1
2X2

i

m(t)
+

l(t)
t

∑l(t)
i=1

1
2V 2

i

l(t)

Taking the limit as t → ∞ (assuming Vi are IID and applying the law of
large numbers):

R =
1
2
λX2 +

1
2
V 2 lim

t→∞
l(t)
t

But

lim
t→∞

t(1− ρ)
l(t)

= V (why?)



Therefore,

R =
1
2
λX2 +

1
2

(1− ρ)V 2

V

W =
R

1− ρ
=

λX2

2(1− ρ)
+

V 2

2V

6 Example 3: slotted FDM

Consider m sessions, each a Poisson process with rate λ/m, frequency division
multiplexed on a channel. The transmission time per packet is m time units
on each subchannel. M/D/1 ⇒ W = λm

2(1−λ) (X = 1/µ = m, ρ = λ/m
µ = λ).

If the system is slotted, i.e. packets can only leave at times m, 2m, 3m, etc...,
then we can view this as M/D/1 with vacations. If no packet is waiting, server
takes a vacation of m units, V = m, V 2 = m2. M/D/1 with vacations ⇒
W = λm

2(1−λ) + m
2 = m

2(1−λ) .


