
Computer Networks

Fairness

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

Life is not fair, but we can at least theorize

1 Introduction

So far, we analyzed a number of systems in terms of average occupancy, through-
put, and delay. However, we did not make any distinction among the customers
arriving to the system. For instance, consider the M/M/1 system with a finite
queue of packets. If multiple flows are sharing the link, it is possible to achieve
high throughput by making one flow generate enough packets, and preventing
other flows from sending (their packets will be dropped). Therefore, we need
another property to ensure that all flows receive an equal share of the resources.
Although not very well defined at this point, we will call this property fairness.
To illustrate the basic idea, consider the following figure:

µ

λ1

λ2

Figure 1: Fairness with two flows

In the above figure, efficiency means that λ1 + λ2 is close to µ. However,
fairness means that λ1 is equal to λ2. We previously showed that a good op-
erating point is when λ1 + λ2 ≈ µ/2 (at 50% utlization, throughput/delay is
high). We also argued that this behavior of M/M/1 is simiar to that of a net-
work in general (because each link can be modeled as an M/M/1 system). But
a network in general is not just one link; therefore, for fairness, the notion of
“equal share” in not necessarily what we think of equality, in particular, how
do we handle flows that use different paths?

1



2 A motivating example

Assume there is no explicit demand or reservation of bandwidth, and that all
the links have a capacity of 1 (unit of bandwidth in bps). How should we assign
rates to the flows in the following figure?

1

4

2 3

Figure 2: An example of fairness

If all flows receive an equal share of the resources, we would assign each flow
a rate of 1/3. However, while it makes sense to limit the rates of flows 1, 2, and
3 to 1/3, it is pointless to do the same for flow 4. Flow 4 may receive a rate
of 2/3 because no other flow will benefit by reducing the rate of flow 4 below
2/3. On the other hand, increasing the rate of flow 4 beyond 2/3 will reduce the
rate of at least one other flow among those which receive a rate of 1/3. So the
assignment of rates (1/3, 1/3, 1/3, 1/4) is fair in some sense. This shows that
fair does not necessarily mean “equal”. So how should we define fairness?

3 Max-Min fairness

The observation made above about flow 4 is a key in defining the notion of
fairness. In particular, for the fair assignment made above, increasing the rate
of flow 4 results in a decrease for some other flow with smaller rate. As illustrated
in the figure below, this means moving away from being fair.

high

low

move

high

low

move

(a) (b)

result

result

Figure 3: Moving towards (a) or away from (b) fairness



A fair assignment is such that any increase in rate results in a decrease of
a smaller rate. In other words, any increase in rate will move us away from
fairness (Figure 3(b)). One possible way of achieving such an assignment is by
maximizing the minimum rate. This strategy can be justified by the following
argument: If the minimum rate is not maximized, then one can increase that
rate while decreasing only larger rates, thus the assignment is not fair. But
this maximization by itself is not enough to ensure the fairness property. For
instance, after maximizing the minimum rate, two flows with larger rates should
obtain the same rate if the rate of one can be trated for the rate of the other.
Therefore, we need to solve a hierarchy of nested problems. First we must obtain
an assignment that maximizes the minimum rate. Among all such assignments,
we must then find the one that maximizes the second smallest, and so on. This
is called the Max-Min fairness and we will show later that is satisfies our fairness
property:

Fairness property: Given an assignment of rates, for every flow f with
rate rf , increasing rf results in a decrease of rf ′ for some flow f ′ such that
rf ′ ≤ rf .

Let l denote a link, and definte:

Fl =
∑

f crosses l

rf

then we need to satisfy the following constraints:

rf ≥ 0 ∀ f

Fl ≤ cl ∀ l

where cl is the capacity of link l.

Our algorithm Max-Min fairness algorithm will work as follows:

• Increase the rates of all flows simultaneously by the same amount until
one or more link saturate (Fl = cl)

• Freeze all flow passing through the saturated link(s)

• Repeat with the process with remaining (active) set of flows

Of course we need a practical way of increasing all rates simultaneoulsy until
a link saturates. To do this, we find the smallest ε such that when rf is increased
by ε for all active flows f , a link will saturate. This can be easily computed as
follows:

min
l

cl − Fl

nl



where nl is the number of flows crossing link l.

Here’s the algorithm:

Initially, rf = 0 for all flows, Fl = 0 for all links, F = {all flows}, and
L = {all links}.
repeat

nl ← number of flows f ∈ F crossing link l
ε ← minl∈L(cl − Fl)/nl

if f ∈ F
then rf ← rf + ε

Fl ←
∑

f crossing l rf

L ← {l|Fl < cl}
F ← F − {f |f crosses a link 6∈ L}

until F = ∅

4 Bottlnecks and the fairness property

Define a link l to be a bottleneck for flow f iff:

• f crosses l

• cl = Fl

• all flows f ′ crossing l satisfy r′f ≤ rf

Note that a direct result of this definition is that if f and f ′ have a common
bottleneck, then rf = rf ′ . Moreover, this definition captures our intuitive notion
of a bottleneck. To see this, consider the following example (assume all links
have unit capacity):

2
3

51

4

r4 = 1

r1 = 2/3

r2 = r3 = r5 = 1/3 2

1 4

3

5

Figure 4: Bottleneck example



flow bottleneck
1 (3,5)
2 (2,3)
3 (2,3)
4 (4,5)
5 (2,3)

From the above example, we can see that, for a given flow, increasing the
capacity of links other than its bottleneck will not help increasing the rate of
that flow. It is easy to see that the Max-Min fairness algorithm of Section 3,
when it terminates, guarantees that every flow has a bottleneck. This is because
every flow crosses a link that eventually saturates, and when a link saturates,
all flows crossing that link have the largest rate. Furthermore, we can make the
following equivalence, which proves that the Max-Min algorithm satisfies the
fairness property.

(1) every flow has a bottlenech ⇔ (2) fairness property

(1) ⇒ (2): Assume we increase rf for some flow f . Since f has a bottleneck
l, Fl = cl (l is saturated) and all flows f ′ going through l satisfy rf ′ ≤ rf .
Therefore, some some rate rf ′ ≤ rf must decrease.

(2) ⇒ (1): Assume some flow f does not have a bottleneck. Therefore, for
every link l that f crosses, either Fl < cl or there exists a flow f ′ crossing l with
rf ′ > rf and Fl = cl. As a result, we can increase rf by only decreasing rates
for flows f ′ such that rf ′ > rf , a contradiction.

5 Generalizations

It is possible to generalize the Max-Min fairness algorithm to handle priorities.
For instance, assume that each flow f is associated with a priority index pf ,
which is an integer. Then, conceptually, each flow f can be considered as a
collection of pf flows of equal priority. We are back to the previous setting, and
the Max-Min fairness algorithm will then change as follows (the requirement
that pf is an integer can be relaxed):

ε ← min
l∈L

cl − Fl∑
f crosses l pf

rf ← rf + pf ε

As a result, the fairness property will be the following:

Fairness property: Given an assignment of rates, for every flow f with
rate rf , increasing rf results in a decrease of rf ′ for some flow f ′ such that
rf ′/pf ′ ≤ rf/pf .



Another variation for the Max-Min fairness algorithm is to require that for
every flow f and every link l, rf ≤ (Fl−cl)/ql, for some given ql. This essentially
means that we do not saturate the link. Therefore, we leave some unutilized
capacity to account for possible fluctuation in the rates. This can be achieved
by adding (a ficticious) flow fl on link l with priority ql (while all flows have
priority 1) to account for the unused capacity. Note that fl will be the last
flow to remain active until link l saturates (since link l is the only link that fl

crosses); therefore, every flow crossing l will satisfy rf ≤ (Fl − cl)/ql. In this
case, the total rate crossing link l will be

nlcl

nl + ql

It is possible also to combine both variations, i.e. priorities and unused
capacity. In this case, we add a ficticious flow on link l with priority equal to
plql, where pl = maxf crosses l pf . The total rate crossing link l will be

∑
f crosses l pfcl∑

f crosses l pf + plql

6 Fairness index

From the Max-Min fairness algorithn, we expect n flows sharing a common
bottleneck to receive the same rates. But what if they don’t in reality? How do
we measure fairness? A famous fairness index is the following:

F (r) =
(
∑

i ri)2

n
∑

i r2
i

This index has nice properties:

• 0 < F (r) ≤ 1:

– totally fair: all ri’s are equal: F (r) = 1

– totally unfair: only one user is given the resource: F (r) = 1/n (which
goes to zero when n →∞)

• independent of scale: the unit of measurment is irrelevant, i.e. multiplying
all rates by the same constant keeps the index unchanged

• sensitive: any slight change in allocation shows up in the index

• fractional: if only k users share the resource equally, F (r) = k/n

References

Dimitri Bertsekas and Robert Gallager, Data Networks


