
Data Communication Networks

Lecture 1

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

Primitive forms of networks . 2
Early networks. 3
Topology . 4
A falvor of network protocols . 5
Token Ring (IBM 1970) . 6
CSMA/CD (Ethernet) . 7
WANs and LANs . 8
Network in modern terminology . 9
Messages . 10
Sessions . 11
Sessions (cont.) . 12
Switching techniques . 13
Circuit switching . 14
Circuit switching (cont.) . 15
Circuit switching (cont.) . 16
Store-and-forward(packet switching) . 17
Store-and-forward (cont.) . 18
Datagram. 19
Virtual circuit . 20
Virtual circuit (cont.) . 21
Switching summary . 22
A network is like an onion(ISO OSI and IETF standard) . 23
Top layers. 24
Transport layer . 25
Network layer . 26
Header and Trailer . 27
DLC . 28
Physical layer . 29
The hourglass shape(an alternative view). 30
Network software . 31
Create a socket . 32
Server . 33
Client. 34

1

Example server . 35
Example server (cont.) . 36
Example client . 37
Example client (cont.) . 38

Primitive forms of networks

■ Early societies: smoke signals

■ 1800s: Telegraphy, messages manually encoded into strings of symbols and manually transmitted,
and relayed if needed

◆ e.g. Morse code, short and long marks V: ...—

■ 1950s - 1960s: Central computers, time-sharing

terminal

central
processor

printer

Early networks

■ First large scale computer networks connecting geographically distributed systems

◆ e.g. ARPATNET, TYMNET

CPU

subnet

terminal

personal
computer

CPU

■ Instead of having a computer as center of network, subnet becomes central

◆ set of nodes (these are computers in their own right)
◆ various pairs of nodes are connected by links

Topology

■ The placement of links in a subnet is often called Topology
■ The previous topology is somewhat arbitrary, which is typical of Wide Area Networks

◆ Wide Area Network: WAN, covering more than a metropolitan area
◆ Local Area Network: LAN, covering few square kilometers at most

■ e.g. building, department

■ In contrast to WANs, LANs have more structured topologies

(a) (b) (c)

(a) Ring, (b) Bus, (c) Star

A falvor of network protocols

■ For a network to function properly and provide useful communication, it is important to establish
rules by which network activity is conducted

■ Such rules are known as protocol
■ One possible problem is the coordination of message transmission

◆ e.g. if all computers

■ insist on transmitting their own messages
■ without relaying other messages

then no communication is achieved

■ We will look at two protocols

◆ Token Ring
◆ CSMA/CD (Ethernet)

Token Ring (IBM 1970)

■ Machines are on a ring topology
■ Messages are transmitted and relayed in only one direction
■ Each message contains information about sender and receiver
■ When a message reaches its destination, the machine keeps a copy of it, but continues relaying it
■ When a message reaches back to sender, the sender knows it must have been delivered and stops

relaying it

But ... Machines can still be selfish!

■ A unique pattern called token is passed around the ring
■ A machine can grab the token, i.e. stops relaying it
■ Only a machine with the possession of the token can transmit its own message
■ All other machines just act as relays
■ When a machine sees its own message, it releases the token

CSMA/CD (Ethernet)

■ CSMA/CD Carrier Sense Multiple Access with Collision Detection
■ Machines are on a bus topology
■ Each message is broadcast on the bus (MA)
■ Every machine keeps those messages that are addressed to it
■ To transmit, each machine (CS):

◆ senses the bus
◆ waits until the bus is silent
◆ begins transmission

■ If another machine begins transmitting, both “detect a clash” (CD) and pause for a random
period, then retry

WANs and LANs

■ In 1980s, many networks started to connect to each other

CPU

subnet

terminal

personal
computer

WAN

LAN

CPU

LAN

■ Practically, a network of networks is more complicated than just a network of nodes

◆ not all networks are created equal ;)
◆ networks evolve differently
◆ the have different conventions and control algorithms

■ e.g. packet format, message forwarding mechanisms, routing

■ Bridges and gateways/routers are used to connect different networks

Network in modern terminology

■ With LANs, WANs, and routers, network connectivity occurs at many different levels
■ We define a network recursively

◆ two or more nodes connected by a physical link

■ point-to-point
■ multiple access (like Token Ring or Ethernet)

◆ two or more networks connected by a node (router/gateway)

cloudcloud cloudcloud

router

host

■ Nodes inside a cloud implement the network function or the switching function

Messages

■ So far we have been deliberately using the term “message” as a unit of communication
■ Q: What really constitutes a unit of communication?
■ A: It depends!

◆ user: receiving partial message is worthless
◆ subnet/computer: in most networks, messages are broken into smaller chunks, called packets,

for effective transmission (later on this)
◆ link: a message is just a sequence of bits

■ Moral of the story: Distinguish between a message and its representation
■ A message carries a specific information that does not change; however, the message may undergo

several transformations as it travels from sender to receiver

◆ broken into packets (and reassembled)
◆ compressed/decompressed
◆ encrypted/decrypted

Sessions

■ Messages between two users occur as a sequence in a larger transaction, such sequence or
transaction is known as a session

■ We can think of a session as a logical channel over which application level processes are
communicating

application 1

application 2

session

■ What service a session should provide?

Sessions (cont.)

■ The service provided depends on the application:

◆ Should we allow messages to be lost?
◆ Should we receive messages in order?

■ Regardless of different guarantees, we may put sessions in two categories

◆ When a setup procedure is required to initiate the session, the session is called a connection

◆ If no such setup is required, and each message is treated independently, the session is
connectionless

■ The way messages are forwarded in the network (switching technique) affects the properties of a
session

Switching techniques

■ Circuit switching

■ Store-and-forward (packet switching)

◆ datagram
◆ virtual circuit

Circuit switching

■ When the session is initiated (connection), it is allocated a given rate λ in bits per second bps
■ A path is then chosen from source to destination
■ Each link on the path allocates the desired rate λ of its capacity C

some capacity
allocated

sender receiver

■ If capacity is used, future sessions are blocked (e.g. phone network)

Circuit switching (cont.)

■ Advantages:

◆ dedicated resource
◆ fixed delay
◆ guaranteed delivery

■ Disadvantages:

◆ typically in data networks, sessions are low duty factor, i.e. bursty
◆ sessions tend to have a short burst of activity followed by long inactive period
◆ circuit switching wastes allocated rate during idle times

x2x1 x3 x4

t1 t2 t3

arrival

delivery

Circuit switching (cont.)

Let
λ = message arrival rate (1/λ = E[ti])
r = allocated rate
L = expected message length (L = E[Xi])

Then the expected delay over a link is L/r.

■ If L/r << 1/λ, the link is under-utilized (previous figure).

■ If the allowable delay is T , then we must have L/r < T . But if T << 1/λ, then L/r << 1/λ.

■ Sessions for which T << 1/λ are called bursty.

Store-and-forward
(packet switching)

■ To overcome the inefficiency of circuit switching, most data networks use what is known as statistical

multiplexing:

◆ links are shared among sessions over time on a demand basis
◆ to ensure that every session gets a turn to transmit, messages are broken into limited size blocks known

as packets
◆ one packet is transmitted at a time using the full capacity of the link
◆ a packet may need to use a link that is not available, because another packet is being forwarded ⇒

must be stored in a queue

■ Althoug queueing delays are hard to manage and control, it can be shown that using links on a need basis
often reduces delays in networks

◆ e.g. issues such as buffer overflow arise ⇒ congestion control algorithms are needed

Store-and-forward (cont.)

Store-and-forward

■ Datagram (connectionless)

■ Virtual circuits (connection-oriented)

Datagram

■ Route is chosen on a packet by packet basis
■ Different packets may follow different routes
■ Packets may arrive out of order

Example: IP (Internet Protocol)

■ Since no path is established, the source and destination addresses (e.g IP addresses) must be
included in each packet (header), i.e. 2dlog ne bits overhead (where n is the number of nodes)

■ The Internet mostly implements this switching technique

Virtual circuit

■ Packets of a session follow the same path
■ Route is chosen at the start of the session
■ Each link can be visualized as being shared by a set of “virtual channels” VCs
■ When the session is set up, a path is established by assigning, one each link of the path, one unused VC

3

6 2

5 8

VC13

VC7

VC7
VC4

Link(5,8)

VC3

VC3

Link(3,5)

Link(8,5) Link(8,2)

■ Each node maintains a mapping of VCs

Node 5 table
(3,5) VC13 → (5,8) VC7
(3,5) VC7 → (5,8) VC4
(6,5) VC3 → (5,8) VC3

Virtual circuit (cont.)

■ Global addresses needed to establish virtual circuit when session start
■ Once established, local VC numbers can be used for routing
■ Worst case we have n(n − 1) sessions, and

dlog n(n − 1)e < dlog n2e = d2 log ne ≤ 2dlog ne

bits overhead is needed to store VC numbers; however, generally virtual circuit requires less
overhead in packet header

Example: X.25 and ATM

Switching summary

Internet

Switching technique

Circuit switching Store-and-forward

Datagram Virtual circuit

- connection oriented
- timely and orderly delivery of messages
- quality of service QoS
- inefficient

- connectionless
- our of order delivery of packets

- connection oriented
- orderly delivery of packets

- no QoS (best effort)
- efficient

A network is like an onion
(ISO OSI and IETF standard)

physical

DLC DLC

network

data link
control

network

transport

session

presentation

application

DLC DLC

network

physical physical physical physical

external
site

subnet
node

subnet
node

external
site

in out in out

physical

data link
control

network

transport

session

presentation

application

physical link

virtual bit pipe

virtual link for

reliable packets

virtual link for end to end packets

virtual link for end to end messages

virtual session

virtual network service

user user

Top layers

■ Application layer: This is the application that is used to access the network. Each application
performs something specific to the user needs, e.g. browsing the web, transferring files, sending
email, etc...

■ Presentation layer: The main functions of the presentation layer are data formats, data
encryption/decryption, data compression/decompression, etc...

■ Session layer: Mainly deals with access rights in setting up sessions, e.g. who has access to
particular network services, billing functions, etc...

■ There is not a strong agreement about the definition of these three top layers. Usually the focus is
on the Transport layer, the Network layer, and the DLC layer.

Transport layer

■ The network layer provides end-to-end packet pipe to the transport layer
■ The transport layer provides end-to-end message service to higher layers

Transport
layer

Transport
layer

message service

packet pipe

■ Functions of transport layer include:

◆ Break messages into packets and reassemble packets into messages (packets of suitable size
to network)

◆ Resequence packets at destination to retrieve correct order (e.g. Datagram)
◆ Achieve end-to-end reliable communication in case network is not reliable, recover from errors

and failures (arbitrary networks can join the Internet!)
◆ Flow control

■ E.g. TCP, UDP

Network layer

■ The network layer accepts incoming packets from the transport layer and transit packet from the DLC layer
■ The network layer routed each packet to the proper outgoing DLC or to transport layer (if destination)
■ Typically, the network layer adds its own header to the packet received from the transport layer to

accomplish the routing function

◆ e.g. source/destination, VC number

Network
layer

DLC 1 DLC 2 DLC 3

Transport
layer

Header and Trailer

■ Each layer/protocol provides a service to the upper layer/protocol
■ Peer processes/protocols communicate information through headers

packet

packet

packet

packet

packet

packet

Transport

Network

DLC

service
interface

peer-to-peer
interface

■ The DLC adds a trailer for error detection and correction

DLC

■ DLC is responsible for error-free transmission of packets across a single link
■ The goal to ensure that every packet is

◆ delivered once,
◆ only once,
◆ without errors,
◆ and in order

■ To accomplish this task, DLC adds its own header/trailer

◆ e.g. header may contain sequence numbers to ensure delivery of packets in order

■ The packet thus modified is called a frame

Physical layer

■ Responsible for actual transmission of bits over a link
■ Delays

◆ Propagation delay: time it takes for signal to travel from one end of link to another =
distance/speed of light

◆ Bandwidth: number of bits that can be transmitted over a period of time, i.e. bits per second
(bps)

◆ Latency of packet =

Propagation delay + size of packet/Bandwidth + Queuing delay

◆ RTT = Round Trip Time for exchanging small messages ≈ 2(Propagation delay + Queuing)

■ Errors

◆ signal experiences power loss
◆ noise
◆ simple channel model: Binary Symmetric Channel p{0 → 1} = p{1 → 0} = p.
◆ in practice errors are bursty

The hourglass shape
(an alternative view)

■ Internet architecture does not imply strict layering

◆ many times there are multiple protocols provided at a given layer in the system, giving an hourglass
shape to the architecture

◆ An application is free to bypass the defined transport layers and to directly use IP

IP

TCP UDP

DNSFTP TFTPHTTP

net 1 net 2 net n

Application

Transport

Network

Link
e.g. Ethernet

■ IP serves as focal point (common method for exchanging packets among networks)

◆ many transport protocols lie above IP (define services)
◆ many networks technologies lie below IP

Network software

■ Most network protocols are implemented in software (that’s one of the main reason for the
Internet’s success)

◆ All computer systems implement their protocols as part of the operating system
◆ The operating systems exports the network functionality as a Network Application

Programming Interface (API)

■ Some API is widely accepted and supported: the socket interface

◆ the main abstraction of the socket interface is the socket

◆ socket: a point where the local application process attaches to the network
◆ the API specifies ways to

■ create sockets
■ attach the socket to the network
■ send/receive through the socket
■ close the socket

Create a socket

int socket (int domain, int type, int protocol)

■ domain: specifies protocol family

◆ PF INET denotes the Internet family
◆ PF UNIX denotes the Unix pipe family
◆ PF PACKET denotes direct access to the network interface, i.e. bypass TCP

■ type: specifies the semantics of the communication

◆ SOCK STREAM denotes a byte stream
◆ SOCK DGRAM denotes a message oriented service

■ protocol: identifies specific protocol to be used, in our case we can simply ignore it because the
combination PF INET and SOCK STREAM implies TCP

■ The return value is an identifier of the newly created socket

Server

int bind(int socket, sockaddr * address, int addr_len)

int listen(int socket, int backlog)

int accept(int socket, sockaddr * address, int * addr_len)

■ The bind operation binds the socket to the network address, a data structure that includes

◆ IP address
◆ TCP port (a port is used to identify the process)

■ The listen operation defines how many connections can be pending on a given socket
■ The accept operation is a blocking operation that does not return until a remote participant has

established a connection

◆ it returns a new socket that corresponds to just this connection
◆ the address argument contains the remote participant’s address

Client

int connect(int socket, sockaddr * address, int addr_len)

■ The connect operation does not return until TCP has successfully established a connection

◆ address contains the remote participants (server) address
◆ client typically does not care which port it uses, OS simply selects an unused one

■ Once a connection is established, the client can use the following to send and receive data:

int send(int socket, char * message, int msg_len, int flags)

int recv(int socket, char * buffer, int buf_len, int flags)

Example server

#include <iostream>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

using std::cout;

using std::cin;

const unsigned short int port = 5432;

const int max_pending = 1;

const int max_len = 256;

int main() {

sockaddr_in address; //address

sockaddr_in client_address; //client address

char message[max_len];

int s;

int new_s;

int len;

//build address

bzero((char *)&address, sizeof(address));

address.sin_family = AF_INET;

address.sin_addr.s_addr = htonl(INADDR_ANY);

address.sin_port = htons(port);

//setup passive open

if ((s=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

cout<<"error in socket";

return 0;

}

Example server (cont.)

//bind socket to address

if (bind(s, (sockaddr *)&address, sizeof(address)) < 0) {

cout<<"error in bind";

return 0;

}

if (listen(s, max_pending) < 0) {

cout<<"error in listen";

return 0;

}

//wait for connection, then receive message

socklen_t size;

while (1) {

if ((new_s = accept(s, (sockaddr *)&client_address, &size)) < 0) {

cout<<"error in accept";

return 0;

}

while (len = recv(new_s, message, sizeof(message), 0))

cout<<message<<"\n";

close(new_s);

}

}

Example client

#include <iostream>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

using std::cout;

using std::cin;

const unsigned short int port = 5432;

int main() {

int s;

sockaddr_in address;

bzero((char *)&address, sizeof(address));

address.sin_family = AF_INET;

address.sin_port = htons(port);

address.sin_addr.s_addr = htonl(INADDR_ANY); //my IP address

//active open

if ((s=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

cout<<"error in socket";

return 0;

}

Example client (cont.)

//connect

if (connect(s, (sockaddr *)&address, sizeof(address)) < 0) {

cout<<"error in connect";

close(s);

return 0;

}

char message[256];

while(cin.getline(message, 256, ’\n’)) {

if (strlen(message) == 0)

break;

send(s,message,strlen(message)+1,0);

}

close(s);

}

	Primitive forms of networks
	Early networks
	Topology
	A falvor of network protocols
	Token Ring (IBM 1970)
	CSMA/CD (Ethernet)
	WANs and LANs
	Network in modern terminology
	Messages
	Sessions
	Sessions (cont.)
	Switching techniques
	Circuit switching
	Circuit switching (cont.)
	Circuit switching (cont.)
	Store-and-forward (packet switching)
	Store-and-forward (cont.)
	Datagram
	Virtual circuit
	Virtual circuit (cont.)
	Switching summary
	A network is like an onion (ISO OSI and IETF standard)
	Top layers
	Transport layer
	Network layer
	Header and Trailer
	DLC
	Physical layer
	The hourglass shape (an alternative view)
	Network software
	Create a socket
	Server
	Client
	Example server
	Example server (cont.)
	Example client
	Example client (cont.)

