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Primitive forms of networks

■ Early societies: smoke signals

■ 1800s: Telegraphy, messages manually encoded into strings of symbols and manually transmitted,
and relayed if needed

◆ e.g. Morse code, short and long marks V: ...—

■ 1950s - 1960s: Central computers, time-sharing

terminal

central
processor

printer

Early networks

■ First large scale computer networks connecting geographically distributed systems

◆ e.g. ARPATNET, TYMNET

CPU

subnet

terminal

personal
computer

CPU

■ Instead of having a computer as center of network, subnet becomes central

◆ set of nodes (these are computers in their own right)
◆ various pairs of nodes are connected by links



Topology

■ The placement of links in a subnet is often called Topology
■ The previous topology is somewhat arbitrary, which is typical of Wide Area Networks

◆ Wide Area Network: WAN, covering more than a metropolitan area
◆ Local Area Network: LAN, covering few square kilometers at most

■ e.g. building, department

■ In contrast to WANs, LANs have more structured topologies

(a) (b) (c)

(a) Ring, (b) Bus, (c) Star

A falvor of network protocols

■ For a network to function properly and provide useful communication, it is important to establish
rules by which network activity is conducted

■ Such rules are known as protocol
■ One possible problem is the coordination of message transmission

◆ e.g. if all computers

■ insist on transmitting their own messages
■ without relaying other messages

then no communication is achieved

■ We will look at two protocols

◆ Token Ring
◆ CSMA/CD (Ethernet)



Token Ring (IBM 1970)

■ Machines are on a ring topology
■ Messages are transmitted and relayed in only one direction
■ Each message contains information about sender and receiver
■ When a message reaches its destination, the machine keeps a copy of it, but continues relaying it
■ When a message reaches back to sender, the sender knows it must have been delivered and stops

relaying it

But ... Machines can still be selfish!

■ A unique pattern called token is passed around the ring
■ A machine can grab the token, i.e. stops relaying it
■ Only a machine with the possession of the token can transmit its own message
■ All other machines just act as relays
■ When a machine sees its own message, it releases the token

CSMA/CD (Ethernet)

■ CSMA/CD Carrier Sense Multiple Access with Collision Detection
■ Machines are on a bus topology
■ Each message is broadcast on the bus (MA)
■ Every machine keeps those messages that are addressed to it
■ To transmit, each machine (CS):

◆ senses the bus
◆ waits until the bus is silent
◆ begins transmission

■ If another machine begins transmitting, both “detect a clash” (CD) and pause for a random
period, then retry



WANs and LANs

■ In 1980s, many networks started to connect to each other

CPU

subnet

terminal

personal
computer

WAN

LAN

CPU

LAN

■ Practically, a network of networks is more complicated than just a network of nodes

◆ not all networks are created equal ;)
◆ networks evolve differently
◆ the have different conventions and control algorithms

■ e.g. packet format, message forwarding mechanisms, routing

■ Bridges and gateways/routers are used to connect different networks

Network in modern terminology

■ With LANs, WANs, and routers, network connectivity occurs at many different levels
■ We define a network recursively

◆ two or more nodes connected by a physical link

■ point-to-point
■ multiple access (like Token Ring or Ethernet)

◆ two or more networks connected by a node (router/gateway)

cloudcloud cloudcloud

router

host

■ Nodes inside a cloud implement the network function or the switching function



Messages

■ So far we have been deliberately using the term “message” as a unit of communication
■ Q: What really constitutes a unit of communication?
■ A: It depends!

◆ user: receiving partial message is worthless
◆ subnet/computer: in most networks, messages are broken into smaller chunks, called packets,

for effective transmission (later on this)
◆ link: a message is just a sequence of bits

■ Moral of the story: Distinguish between a message and its representation
■ A message carries a specific information that does not change; however, the message may undergo

several transformations as it travels from sender to receiver

◆ broken into packets (and reassembled)
◆ compressed/decompressed
◆ encrypted/decrypted

Sessions

■ Messages between two users occur as a sequence in a larger transaction, such sequence or
transaction is known as a session

■ We can think of a session as a logical channel over which application level processes are
communicating

application 1

application 2

session

■ What service a session should provide?



Sessions (cont.)

■ The service provided depends on the application:

◆ Should we allow messages to be lost?
◆ Should we receive messages in order?

■ Regardless of different guarantees, we may put sessions in two categories

◆ When a setup procedure is required to initiate the session, the session is called a connection

◆ If no such setup is required, and each message is treated independently, the session is
connectionless

■ The way messages are forwarded in the network (switching technique) affects the properties of a
session

Switching techniques

■ Circuit switching

■ Store-and-forward (packet switching)

◆ datagram
◆ virtual circuit



Circuit switching

■ When the session is initiated (connection), it is allocated a given rate λ in bits per second bps
■ A path is then chosen from source to destination
■ Each link on the path allocates the desired rate λ of its capacity C

some capacity
allocated

sender receiver

■ If capacity is used, future sessions are blocked (e.g. phone network)

Circuit switching (cont.)

■ Advantages:

◆ dedicated resource
◆ fixed delay
◆ guaranteed delivery

■ Disadvantages:

◆ typically in data networks, sessions are low duty factor, i.e. bursty
◆ sessions tend to have a short burst of activity followed by long inactive period
◆ circuit switching wastes allocated rate during idle times

x2x1 x3 x4

t1 t2 t3

arrival

delivery



Circuit switching (cont.)

Let
λ = message arrival rate (1/λ = E[ti])
r = allocated rate
L = expected message length (L = E[Xi])

Then the expected delay over a link is L/r.

■ If L/r << 1/λ, the link is under-utilized (previous figure).

■ If the allowable delay is T , then we must have L/r < T . But if T << 1/λ, then L/r << 1/λ.

■ Sessions for which T << 1/λ are called bursty.

Store-and-forward
(packet switching)

■ To overcome the inefficiency of circuit switching, most data networks use what is known as statistical

multiplexing:

◆ links are shared among sessions over time on a demand basis
◆ to ensure that every session gets a turn to transmit, messages are broken into limited size blocks known

as packets
◆ one packet is transmitted at a time using the full capacity of the link
◆ a packet may need to use a link that is not available, because another packet is being forwarded ⇒

must be stored in a queue

■ Althoug queueing delays are hard to manage and control, it can be shown that using links on a need basis
often reduces delays in networks

◆ e.g. issues such as buffer overflow arise ⇒ congestion control algorithms are needed



Store-and-forward (cont.)

Store-and-forward

■ Datagram (connectionless)

■ Virtual circuits (connection-oriented)

Datagram

■ Route is chosen on a packet by packet basis
■ Different packets may follow different routes
■ Packets may arrive out of order

Example: IP (Internet Protocol)

■ Since no path is established, the source and destination addresses (e.g IP addresses) must be
included in each packet (header), i.e. 2dlog ne bits overhead (where n is the number of nodes)

■ The Internet mostly implements this switching technique



Virtual circuit

■ Packets of a session follow the same path
■ Route is chosen at the start of the session
■ Each link can be visualized as being shared by a set of “virtual channels” VCs
■ When the session is set up, a path is established by assigning, one each link of the path, one unused VC

3

6 2

5 8

VC13

VC7

VC7
VC4

Link(5,8)

VC3

VC3

Link(3,5)

Link(8,5) Link(8,2)

■ Each node maintains a mapping of VCs

Node 5 table
(3,5) VC13 → (5,8) VC7
(3,5) VC7 → (5,8) VC4
(6,5) VC3 → (5,8) VC3

Virtual circuit (cont.)

■ Global addresses needed to establish virtual circuit when session start
■ Once established, local VC numbers can be used for routing
■ Worst case we have n(n − 1) sessions, and

dlog n(n − 1)e < dlog n2e = d2 log ne ≤ 2dlog ne

bits overhead is needed to store VC numbers; however, generally virtual circuit requires less
overhead in packet header

Example: X.25 and ATM



Switching summary

Internet

Switching technique

Circuit switching Store-and-forward

Datagram Virtual circuit

- connection oriented
- timely and orderly delivery of messages
- quality of service QoS
- inefficient

- connectionless
- our of order delivery of packets

- connection oriented
- orderly delivery of packets

- no QoS (best effort)
- efficient

A network is like an onion
(ISO OSI and IETF standard)
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Top layers

■ Application layer: This is the application that is used to access the network. Each application
performs something specific to the user needs, e.g. browsing the web, transferring files, sending
email, etc...

■ Presentation layer: The main functions of the presentation layer are data formats, data
encryption/decryption, data compression/decompression, etc...

■ Session layer: Mainly deals with access rights in setting up sessions, e.g. who has access to
particular network services, billing functions, etc...

■ There is not a strong agreement about the definition of these three top layers. Usually the focus is
on the Transport layer, the Network layer, and the DLC layer.

Transport layer

■ The network layer provides end-to-end packet pipe to the transport layer
■ The transport layer provides end-to-end message service to higher layers

Transport
layer

Transport
layer

message service

packet pipe

■ Functions of transport layer include:

◆ Break messages into packets and reassemble packets into messages (packets of suitable size
to network)

◆ Resequence packets at destination to retrieve correct order (e.g. Datagram)
◆ Achieve end-to-end reliable communication in case network is not reliable, recover from errors

and failures (arbitrary networks can join the Internet!)
◆ Flow control

■ E.g. TCP, UDP



Network layer

■ The network layer accepts incoming packets from the transport layer and transit packet from the DLC layer
■ The network layer routed each packet to the proper outgoing DLC or to transport layer (if destination)
■ Typically, the network layer adds its own header to the packet received from the transport layer to

accomplish the routing function

◆ e.g. source/destination, VC number

Network
layer

DLC 1 DLC 2 DLC 3

Transport
layer

Header and Trailer

■ Each layer/protocol provides a service to the upper layer/protocol
■ Peer processes/protocols communicate information through headers

packet

packet

packet

packet

packet

packet

Transport

Network

DLC

service 
interface

peer-to-peer 
interface

■ The DLC adds a trailer for error detection and correction



DLC

■ DLC is responsible for error-free transmission of packets across a single link
■ The goal to ensure that every packet is

◆ delivered once,
◆ only once,
◆ without errors,
◆ and in order

■ To accomplish this task, DLC adds its own header/trailer

◆ e.g. header may contain sequence numbers to ensure delivery of packets in order

■ The packet thus modified is called a frame

Physical layer

■ Responsible for actual transmission of bits over a link
■ Delays

◆ Propagation delay: time it takes for signal to travel from one end of link to another =
distance/speed of light

◆ Bandwidth: number of bits that can be transmitted over a period of time, i.e. bits per second
(bps)

◆ Latency of packet =

Propagation delay + size of packet/Bandwidth + Queuing delay

◆ RTT = Round Trip Time for exchanging small messages ≈ 2(Propagation delay + Queuing)

■ Errors

◆ signal experiences power loss
◆ noise
◆ simple channel model: Binary Symmetric Channel p{0 → 1} = p{1 → 0} = p.
◆ in practice errors are bursty



The hourglass shape
(an alternative view)

■ Internet architecture does not imply strict layering

◆ many times there are multiple protocols provided at a given layer in the system, giving an hourglass
shape to the architecture

◆ An application is free to bypass the defined transport layers and to directly use IP

IP

TCP UDP

DNSFTP TFTPHTTP

net 1 net 2 net n

Application

Transport

Network

Link
e.g. Ethernet

■ IP serves as focal point (common method for exchanging packets among networks)

◆ many transport protocols lie above IP (define services)
◆ many networks technologies lie below IP

Network software

■ Most network protocols are implemented in software (that’s one of the main reason for the
Internet’s success)

◆ All computer systems implement their protocols as part of the operating system
◆ The operating systems exports the network functionality as a Network Application

Programming Interface (API)

■ Some API is widely accepted and supported: the socket interface

◆ the main abstraction of the socket interface is the socket

◆ socket: a point where the local application process attaches to the network
◆ the API specifies ways to

■ create sockets
■ attach the socket to the network
■ send/receive through the socket
■ close the socket



Create a socket

int socket (int domain, int type, int protocol)

■ domain: specifies protocol family

◆ PF INET denotes the Internet family
◆ PF UNIX denotes the Unix pipe family
◆ PF PACKET denotes direct access to the network interface, i.e. bypass TCP

■ type: specifies the semantics of the communication

◆ SOCK STREAM denotes a byte stream
◆ SOCK DGRAM denotes a message oriented service

■ protocol: identifies specific protocol to be used, in our case we can simply ignore it because the
combination PF INET and SOCK STREAM implies TCP

■ The return value is an identifier of the newly created socket

Server

int bind(int socket, sockaddr * address, int addr_len)

int listen(int socket, int backlog)

int accept(int socket, sockaddr * address, int * addr_len)

■ The bind operation binds the socket to the network address, a data structure that includes

◆ IP address
◆ TCP port (a port is used to identify the process)

■ The listen operation defines how many connections can be pending on a given socket
■ The accept operation is a blocking operation that does not return until a remote participant has

established a connection

◆ it returns a new socket that corresponds to just this connection
◆ the address argument contains the remote participant’s address



Client

int connect(int socket, sockaddr * address, int addr_len)

■ The connect operation does not return until TCP has successfully established a connection

◆ address contains the remote participants (server) address
◆ client typically does not care which port it uses, OS simply selects an unused one

■ Once a connection is established, the client can use the following to send and receive data:

int send(int socket, char * message, int msg_len, int flags)

int recv(int socket, char * buffer, int buf_len, int flags)

Example server

#include <iostream>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

using std::cout;

using std::cin;

const unsigned short int port = 5432;

const int max_pending = 1;

const int max_len = 256;

int main() {

sockaddr_in address; //address

sockaddr_in client_address; //client address

char message[max_len];

int s;

int new_s;

int len;

//build address

bzero((char *)&address, sizeof(address));

address.sin_family = AF_INET;

address.sin_addr.s_addr = htonl(INADDR_ANY);

address.sin_port = htons(port);

//setup passive open

if ((s=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

cout<<"error in socket";

return 0;

}



Example server (cont.)

//bind socket to address

if (bind(s, (sockaddr *)&address, sizeof(address)) < 0) {

cout<<"error in bind";

return 0;

}

if (listen(s, max_pending) < 0) {

cout<<"error in listen";

return 0;

}

//wait for connection, then receive message

socklen_t size;

while (1) {

if ((new_s = accept(s, (sockaddr *)&client_address, &size)) < 0) {

cout<<"error in accept";

return 0;

}

while (len = recv(new_s, message, sizeof(message), 0))

cout<<message<<"\n";

close(new_s);

}

}

Example client

#include <iostream>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

using std::cout;

using std::cin;

const unsigned short int port = 5432;

int main() {

int s;

sockaddr_in address;

bzero((char *)&address, sizeof(address));

address.sin_family = AF_INET;

address.sin_port = htons(port);

address.sin_addr.s_addr = htonl(INADDR_ANY); //my IP address

//active open

if ((s=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

cout<<"error in socket";

return 0;

}



Example client (cont.)

//connect

if (connect(s, (sockaddr *)&address, sizeof(address)) < 0) {

cout<<"error in connect";

close(s);

return 0;

}

char message[256];

while(cin.getline(message, 256, ’\n’)) {

if (strlen(message) == 0)

break;

send(s,message,strlen(message)+1,0);

}

close(s);

}
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