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DLC

■ We are not going to study the physical layer and how communication signals are sent and received
■ We will assume that we are capable of sending bits over a link
■ DLC is responsible for reliable transmission of packets over a link

◆ every packet is delivered once,
◆ only once,
◆ without errors,
◆ and in order

■ To achieve this goal, we have:

◆ Framing: determine start and end of packets
◆ Error detection: determine when errors exist
◆ Error correction: retransmit packets containing errors

Framing

■ Recall that DLC adds its own header and trailer to the packet ⇒ frame

packetheader trailer

frame

■ The problem is to decide where successive frames start and end

◆ in some cases, there is a period of idle fills between successive frames (e.g. synchronous bit
pipe)

◆ it is also necessary to separate idle fills from frames
◆ even when idle fill are replaces by dead periods (intermittent bit pipe), problem is not

simplified, e.g. often no dead periods

. . . 01011010110010110101101110101110 . . .

Where is the data?



Character based framing

■ Character based codes, such as ASCII (7 bits and 1 parity bit), provide binary representation for keyboard
characters and terminal control characters

■ Such codes can also provide representation for various communication characters

◆ SYN: a string of SYN characters provide idle fill between frames when a sending DLC has no data to
send (but a synchronous modem requires bits)

◆ STX: start of text
◆ ETX: end of text

SYN STX header packet ETX CRC SYN SYNSYN

frame

trailer added by DLC 
for error detection

(later)

■ Frame must contain integer number of characters
■ Frame is character code dependent ⇒ how do we send binary data

◆ e.g. packet is an arbitrary binary string and may possibly contain the ETX character for instance, which
could be wrongly interpreted as end of frame

Character based framing (cont.)

■ A special control character DLE (Data Link Escape) is inserted before any intentional use of
communication control characters

◆ e.g. DLE is not inserted before the possible appearance these characters as part of the binary
data

But what if DLE appears itself in the data?

■ Insert a DLE before each appearance of DLE in data

◆ e.g. DLE ETX (but not DLE DLE ETX): end of frame
◆ e.g. DLE DLE ETX (but not DLE DLE DLE ETX): DLE ETX in data

SYN STX header packet ETX CRC SYN SYNSYN

frame

DLE DLE

■ Too much overhead: at least 6 characters/packet
■ Primary framing method from 1960-1975



Length field
■ The basic problem is to inform the receiving DLC where each idle fill ends and where each frame

ends

◆ idle fill: in principle, easy to identify because it is represented by a fixed string
◆ frame: harder to indicate where it ends because it consists of arbitrary and unknown bit string

■ Include a length field of certain number of bits in header (e.g. DECNET)

Idle fill ||||| packet CRC Idle fill header packet CRC

header

length

■ Once synchronized, DLC can always tell where next frame starts
■ Length field restricts packet size

◆ length field must be blog2 MaxFrameSizec + 1 bits (that’s the overhead)

■ Difficult to recover from error in length field

◆ e.g. resynchronization needed after error in length field

Maximum frame size

■ How should transport layer choose maximum packet size?

◆ not a big deal since IP fragments packets further if necessary
◆ usually about 1500 bytes (from Ethernet)
◆ but theoretically speaking?

■ Let Kmax be the maximum packet size. Assume V overhead bits. Let M be the message length.
Then we have

M + d
M

Kmax

eV

bits to send
Kmax V Kmax V Kmax V Rest V

Therefore,

◆ Kmax ↗ ⇒ small overhead per message
◆ Kmax ↘ ⇒ faster delivery of message (why?)



Maximum frame size (cont.)

■ What is the time needed for the message to traverse j links?

1
2 3 4

j

sender

receiver

■ Assume capacity of link is c bps (bandwidth)

T =
(Kmax + V )(j − 1)

c
+

M + d M

Kmax

eV

c
+ P + Q

E[T ] ∝ (Kmax + V )(j − 1) + E[M ] +
E[M ]

Kmax

V

■ Minimizing (take first derivative and set it to zero)

Kmax =

√

E[M ]V

j − 1

Fixed length packets/frames

■ Length field is implicit (not needed)

◆ e.g. ATM, all packets are 53 bytes

■ Requires synchronization upon initialization

■ Message length not multiple of packet size

◆ last packet contains idle fill (efficiency?)



Bit oriented framing

■ In character based framing, DLE ETX indicates the end of frame

◆ avoided within frame by doubling each DLE character

■ In bit oriented framing, a special binary flag indicates the end of frame

◆ avoided within frame using a technique called bit stuffing

■ The difference is that a flag can be of any length (later we see how to set length to minimize overhead)
■ Standard protocols use 01111110, we denote it by 0160
■ The same flag can be used to indicate start of frame

01111110 . . . . . . . . . . . . . . . . . . 01111110

■ Standard DLCs have also an abort capability in which a frame can be aborted by sending 7 or more
consecutive 1’s (15 consecutive 1’s ⇒ link is idle)

■ Therefore, 0111111, i.e. 016 is the actual bit string that must be avoided in data

Bit stuffing, 1970 by IBM

Bit stuffing
■ Sender DLC

◆ insert (stuff) a 0 after each appearance of five consecutive 1’s
◆ append the flag 0160 (without stuffing) at the end of frame

■ Receiver DLC

◆ delete the first 0 after each string of five consecutive 1’s
◆ if six consecutive 1’s are seen ⇒ end of frame

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0
0 0 0 0

stuffed bits

Which ones of these stuffed bits can be avoided (provided receiver’s rule for deleting stuffed bits is
changed accordingly)?



Overhead of bit stuffing■ What is the overhead of bit stuffing (assume flag = 01j0)?

◆ if j ↗ ⇒ less stuffing but longer flag
◆ if j ↘ ⇒ more stuffing but shorter flag

■ For the sake of analysis, assume a random string of bits with p(0) = p(1) = 1/2

◆ insertion after ith bit occurs with probability (1/2)j

0 1 . . .1
︸ ︷︷ ︸

j−1

↓

◆ also insertion after ith bit occurs with probability (1/2)2j−1

0 1 . . . 1
︸ ︷︷ ︸

j−1

1 . . . 1
︸ ︷︷ ︸

j−1

↓

◆ since (1/2)2j−1 << (1/2)j , we can ignore such event and events of insertion dur to yet longer strings
of 1’s

■ The probability of stuffing after the ith bit is approximately 2−j , which is also E[stuffed @ i]
■ By linearity of expectation, E[stuffed|K] ≈ K2−j (be careful at boundary), where K is the length of the

frame

Overhead of bit stuffing (cont.)
■ From previous slide

E[stuffed] = E[K]2−j

E[overhead] = E[K]2−j

︸ ︷︷ ︸

stuffed

+ j + 2
︸ ︷︷ ︸

flag

■ Minimizing with respect to j, we need smallest j such that

E[K]2−j + j + 2 < E[K]2−(j+1) + (j + 1) + 2

j j + 1

E[k]2−(j+1) < 1

■ The smallest j that satisfies above is j = blog2 E[k]c
■ We can show that (homework?)

log2 E[K] + 2.914 ≤ E[overhead] ≤ log2 E[K] + 3



Can we do better?

■ Length field based framing and bit oriented framing are comparable in their overhead

≈ log2 K

where K is the length of the frame
■ Can we do better? Information theory tells us NO.
■ Essentially, we are encoding information about the length of the frame at the sending DLC and

transmitting it to the receiving DLC
■ At least we need a number of bits equal to the entropy

H =
Kmax∑

k=1

p(k) log2

1

p(k)

When distribution is uniform, i.e. p = 1

Kmax

, H = log2 Kmax.

Error detection

■ All framing techniques are sensitive to errors

◆ error in DLE ETX
◆ error in length field (re-sync needed)
◆ error in flag

■ flag ruined (frame disappears)
■ flag created by error (extra frame appears)

◆ error in data itself

■ Flag approach is least sensitive to errors because a flag will eventually appear

◆ the only thing is that an erroneous packet/frame is created
◆ but this can be removed by error detection techniques

■ Error detection is used by receiving DLC to determine if a frame contains errors
■ If frame contains errors, receiver requires the transmitter to resend the frame



How to detect errors?

■ The problem (simply stated)

◆ Assume that DLC knows where frames begin and end (solved earlier)
◆ Determine which frames contain errors

■ Error cannot be detected by analyzing the packet itself (why?)
■ Therefore, extra bits must be used

◆ Parity check

■ single parity
■ multiple parity (e.g. horizontal and vertical)

◆ Cyclic Redundancy Check CRC

Single parity check

■ Add one parity bit
■ Parity bit is 1 if frame contains ODD number of 1’s, and 0 otherwise

◆ e.g. 1001010 1

◆ e.g. 0111010 0

■ Therefore, a frame always contains an even number of 1’s
■ Receiver counts number of 1’s

◆ ODD number of 1’s: an error must have occurred
◆ EVEN number of 1’s: interpret as no error (why?)

■ even number of errors cannot be detected!
■ p(undetected error) =

∑

i even

(
k

i

)
pi(1 − p)i assuming independent errors (simplification),

where k is the length of the frame, p is the probability of error (binary symmetric channel)



Horizontal and vertical parity checks

■ Data is visualized as a rectangular array

1 0 0 1 0 1 0
0 1 1 1 0 1 0
1 1 1 0 0 0 1
1 0 0 0 1 1 1
0 0 1 1 0 0 1

■ Parity bit is computed for every row and every column
■ If an even number of errors is confined to a single row, each of them can be detected by the

corresponding column parity checks (and vice-versa)

Horizontal and vertical parity checks

■ Data is visualized as a rectangular array

1 0 0 1 0 1 0 1
0 1 1 1 0 1 0 0
1 1 1 0 0 0 1 0 horizontal checks
1 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1
1 0 1 1 1 1 1 0 ← always consistent with both checks

(why?) (addition modulo 2)

vertical checks

■ Parity bit is computed for every row and every column
■ If an even number of errors is confined to a single row, each of them can be detected by the

corresponding column parity checks (and vice-versa)



Horizontal and vertical parity checks

■ Data is visualized as a rectangular array

1 0 0 1 0 1 0 1
0 1 1 1 0 1 0 0

1 1 1 0 0 0 1 0 horizontal checks
1 0 0 0 1 1 1 0

0 0 1 1 0 0 1 1
1 0 1 1 1 1 1 0 ← always consistent with both checks

(why?) (addition modulo 2)

vertical checks

■ Parity bit is computed for every row and every column
■ If an even number of errors is confined to a single row, each of them can be detected by the

corresponding column parity checks (and vice-versa)
■ Some errors are still undetected

◆ e.g. any 4 errors forming a rectangle

Arbitrary parity check codes
■ Parity check code is simply addition modulo 2

s1 s2 . . . sk
︸ ︷︷ ︸

Kbit frame

c1 c2 . . . cL
︸ ︷︷ ︸

Lbit parity check

■ every ci is the sum of some bits in s1 . . . sK

ci =

K∑

j=1

αijsj

where α is an L × K 0-1 matrixs1 s2 s3 c1 c2 c3 c4

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 0 1 1 1 c1 = s1 + s3

0 1 1 1 0 1 0 c2 = s1 + s2 + s3

1 0 0 1 1 1 0 c3 = s1 + s2

1 0 1 0 0 1 1 c4 = s2 + s3

1 1 0 1 0 0 1
1 1 1 0 1 0 0

α =







1 0 1
1 1 1
1 1 0
0 1 1









Effectiveness of a code

K L
︸ ︷︷ ︸

codeword

The effectiveness of a code is usually measured by three parameters

■ minimum distance of the code d: the smallest number of errors that can convert one code word
into another

■ burst detecting capability

◆ burst = number of bits from first error to last error (inclusive)
◆ defined as: largest integer B such that a code can detect all bursts ≤ B

■ probability that a random string is accepted as error free

◆ useful when framing is lost, e.g. check code is random with respect to received frame
◆ We have 2K codewords (why?) and 2K+L random strings
◆ therefore, the probability is 2−L

Effectiveness of a code (cont.)

■ Minimum distance d

◆ single parity:

◆ horz. and vert. parity:

■ Burst detecting capability B

◆ single parity:

◆ horz. and vert. parity (assumes data sent by rows):



Cyclic Redundancy Check

■ For convenience, denote the data bits as

sK−1, sK−2, . . ., s0

■ Represent the string as a polynomial

s(x) = sK−1x
K−1 + sK−2x

K−2 + . . . + s1x + s0

■ Similarly, we can represent the CRC (with L bits) as

c(x) = cL−1x
L−1 + cL−2x

L−2 + . . . + c1x + c0

■ The whole frame can be represented as a polynomial

f(x) = s(x)xL + c(x) = sK−1
︸ ︷︷ ︸

xL+K−1 + . . . + s0
︸︷︷︸

xL + cL−1
︸︷︷︸

xL−1 + . . . + c0
︸︷︷︸

■ Why this polynomial representation? because we are going to obtain c as c(x) by dividing s(x)xL by some
polynomial g(x)

Obtaining c(x)

■ We know si (data) for i = 0 . . . K − 1
■ How do we compute ci (CRC) for i = 0 . . . L − 1?

◆ let g(x) = xL + gL−1x
L−1 + . . . + g1x + 1 be given (gL = g0 = 1)

◆ then

c(x) = Remainder

[

s(x)xL

g(x)

]

↖ division modulo 2

◆ result is a degree L − 1 polynomial ⇒ L bits

■ Example: s = 101 (K = 3) and g(x) = x3 + x2 + 1 (L = 3)

◆ s(x) =?
◆ s(x)xL =?
◆ divide s(x)xL by g(x) and obtain remainder (i’ll do it on the board?)



Another example

s = 110101

g(x) = x3 + 1

s(x) = x5 + x4 + x2 + 1

s(x)xL = x8 + x7 + x5 + x3

x8 + x7 + x5 + x3 x3 + 1
x8 + x5 x5+x4+x+1
x7 + x3

x7 + x4

x4 + x3

x4 + x
x3 + x
x3 + 1
x + 1

c(x) = 0.x2 + 1.x + 1 (L = 3) ⇒ c = 011

110101 011

Using bits only

s = 110101

g(x) = x3 + 1 (L = 3)

g = 1 0 0 1
↓ ↓ ↓ ↓
x3 x2 x1 x0

L
︷ ︸︸ ︷

s(x)xL ⇒ 1 1 0 1 0 1 0 0 0
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
x8 x7 x6 x5 x4 x3 x2 x1 x0



Using bits only (cont.)

1 1 0 1 0 1 0 0 0 1 0 0 1

1 0 0 1 1 1 0 0 1 1

1 0 0 0

1 0 0 1

0 0 1 1

0 0 0 0

0 1 1 0

0 0 0 0

1 1 0 0

1 0 0 1

1 0 1 0

1 0 0 1

0 1 1

Using bits only (cont.)

1 1 0 1 0 1 0 0 0 1 0 0 1

1 0 0 1 1 1 0 0 1 1

1 0 0 0

1 0 0 1

0 0 1 1

0 0 0 0

0 1 1 0

0 0 0 0

1 1 0 0

1 0 0 1

1 0 1 0

1 0 0 1

0 1 1

■ Multiply g by first bit
■ Add
■ Shift
■ Can be implemented using a feedback shift reg-

ister



Feedback shift register

g0 g1 g2 gL-2 gL-1

s0 … sK-L-1

sK-L sK-L+1 sK-2 sK-1

■ Register is initialized with first L bits of s
■ After K shifts, switch is moved and CRC is read

How does c(x) help?

s(x)xL = g(x)z(x) + c(x)

s(x)xL + c(x) = g(x)z(x) + c(x) + c(x)
︸ ︷︷ ︸

0

(modulo 2)

s(x)xL + c(x) = g(x)z(x)

f(x) = g(x)z(x)

■ Polynomial representation of the frame is multiple of g(x)
■ Assume f(x) received as y(x)
■ Receiver DLC computers

Remainder

[
y(x)

g(x)

]

◆ if remainder is not zero ⇒ error in frame
◆ if remainder is zero, declare the frame error free



Undetected errors

■ Assume error is e(x), i.e. y(x) = f(x) + e(x)

■ Then, y(x)
g(x) = f(x)

g(x) + e(x)
g(x)

■ Therefore, we have undetected errors iff e(x) 6= 0 divisible by g(x)
■ Single errors are always detected

◆ assume undetected, i.e. e(x) = xi = g(x)z(x) for some i
◆ since g(x) = xL + . . . + 1, multiplying g(x) by any z(x) 6= 0 cannot produce xi (must produce at least

2 terms)

■ g(x) can be chosen such that

◆ all odd number of errors are detected
◆ all double errors are detected (if K + L < 2L)
◆ therefore, minimum distance d = 4
◆ burst detecting capability B = L
◆ probability of random string accepted is 2−L

■ e.g. (L=16) g(x) = x16 + x15 + x2 + 1 CRC-16
■ e.g. (L=16) g(x) = x16 + x12 + x5 + 1 CRC-CCITT
■ e.g. (L=32) g(x) = ... (see book page 64)
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