
Data Communication Networks

Lecture 2

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

DLC . 2
Framing . 3
Character based framing . 4
Character based framing (cont.) . 5
Length field . 6
Maximum frame size . 7
Maximum frame size (cont.) . 8
Fixed length packets/frames . 9
Bit oriented framing . 10
Bit stuffing . 11
Overhead of bit stuffing . 12
Overhead of bit stuffing (cont.) . 13
Can we do better? . 14
Error detection . 15
How to detect errors? . 16
Single parity check . 17
Horizontal and vertical parity checks . 18
Horizontal and vertical parity checks . 19
Horizontal and vertical parity checks . 20
Arbitrary parity check codes . 21
Effectiveness of a code . 22
Effectiveness of a code (cont.) . 23
Cyclic Redundancy Check . 24
Obtaining c(x) . 25
Another example . 26
Using bits only . 27
Using bits only (cont.) . 28
Using bits only (cont.) . 29
Feedback shift register . 30
How does c(x) help? . 31
Undetected errors . 32

1

DLC

■ We are not going to study the physical layer and how communication signals are sent and received
■ We will assume that we are capable of sending bits over a link
■ DLC is responsible for reliable transmission of packets over a link

◆ every packet is delivered once,
◆ only once,
◆ without errors,
◆ and in order

■ To achieve this goal, we have:

◆ Framing: determine start and end of packets
◆ Error detection: determine when errors exist
◆ Error correction: retransmit packets containing errors

Framing

■ Recall that DLC adds its own header and trailer to the packet ⇒ frame

packetheader trailer

frame

■ The problem is to decide where successive frames start and end

◆ in some cases, there is a period of idle fills between successive frames (e.g. synchronous bit
pipe)

◆ it is also necessary to separate idle fills from frames
◆ even when idle fill are replaces by dead periods (intermittent bit pipe), problem is not

simplified, e.g. often no dead periods

. . . 01011010110010110101101110101110 . . .

Where is the data?

Character based framing

■ Character based codes, such as ASCII (7 bits and 1 parity bit), provide binary representation for keyboard
characters and terminal control characters

■ Such codes can also provide representation for various communication characters

◆ SYN: a string of SYN characters provide idle fill between frames when a sending DLC has no data to
send (but a synchronous modem requires bits)

◆ STX: start of text
◆ ETX: end of text

SYN STX header packet ETX CRC SYN SYNSYN

frame

trailer added by DLC
for error detection

(later)

■ Frame must contain integer number of characters
■ Frame is character code dependent ⇒ how do we send binary data

◆ e.g. packet is an arbitrary binary string and may possibly contain the ETX character for instance, which
could be wrongly interpreted as end of frame

Character based framing (cont.)

■ A special control character DLE (Data Link Escape) is inserted before any intentional use of
communication control characters

◆ e.g. DLE is not inserted before the possible appearance these characters as part of the binary
data

But what if DLE appears itself in the data?

■ Insert a DLE before each appearance of DLE in data

◆ e.g. DLE ETX (but not DLE DLE ETX): end of frame
◆ e.g. DLE DLE ETX (but not DLE DLE DLE ETX): DLE ETX in data

SYN STX header packet ETX CRC SYN SYNSYN

frame

DLE DLE

■ Too much overhead: at least 6 characters/packet
■ Primary framing method from 1960-1975

Length field
■ The basic problem is to inform the receiving DLC where each idle fill ends and where each frame

ends

◆ idle fill: in principle, easy to identify because it is represented by a fixed string
◆ frame: harder to indicate where it ends because it consists of arbitrary and unknown bit string

■ Include a length field of certain number of bits in header (e.g. DECNET)

Idle fill ||||| packet CRC Idle fill header packet CRC

header

length

■ Once synchronized, DLC can always tell where next frame starts
■ Length field restricts packet size

◆ length field must be blog2 MaxFrameSizec + 1 bits (that’s the overhead)

■ Difficult to recover from error in length field

◆ e.g. resynchronization needed after error in length field

Maximum frame size

■ How should transport layer choose maximum packet size?

◆ not a big deal since IP fragments packets further if necessary
◆ usually about 1500 bytes (from Ethernet)
◆ but theoretically speaking?

■ Let Kmax be the maximum packet size. Assume V overhead bits. Let M be the message length.
Then we have

M + d
M

Kmax

eV

bits to send
Kmax V Kmax V Kmax V Rest V

Therefore,

◆ Kmax ↗ ⇒ small overhead per message
◆ Kmax ↘ ⇒ faster delivery of message (why?)

Maximum frame size (cont.)

■ What is the time needed for the message to traverse j links?

1
2 3 4

j

sender

receiver

■ Assume capacity of link is c bps (bandwidth)

T =
(Kmax + V)(j − 1)

c
+

M + d M

Kmax

eV

c
+ P + Q

E[T] ∝ (Kmax + V)(j − 1) + E[M] +
E[M]

Kmax

V

■ Minimizing (take first derivative and set it to zero)

Kmax =

√

E[M]V

j − 1

Fixed length packets/frames

■ Length field is implicit (not needed)

◆ e.g. ATM, all packets are 53 bytes

■ Requires synchronization upon initialization

■ Message length not multiple of packet size

◆ last packet contains idle fill (efficiency?)

Bit oriented framing

■ In character based framing, DLE ETX indicates the end of frame

◆ avoided within frame by doubling each DLE character

■ In bit oriented framing, a special binary flag indicates the end of frame

◆ avoided within frame using a technique called bit stuffing

■ The difference is that a flag can be of any length (later we see how to set length to minimize overhead)
■ Standard protocols use 01111110, we denote it by 0160
■ The same flag can be used to indicate start of frame

01111110 01111110

■ Standard DLCs have also an abort capability in which a frame can be aborted by sending 7 or more
consecutive 1’s (15 consecutive 1’s ⇒ link is idle)

■ Therefore, 0111111, i.e. 016 is the actual bit string that must be avoided in data

Bit stuffing, 1970 by IBM

Bit stuffing
■ Sender DLC

◆ insert (stuff) a 0 after each appearance of five consecutive 1’s
◆ append the flag 0160 (without stuffing) at the end of frame

■ Receiver DLC

◆ delete the first 0 after each string of five consecutive 1’s
◆ if six consecutive 1’s are seen ⇒ end of frame

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0
0 0 0 0

stuffed bits

Which ones of these stuffed bits can be avoided (provided receiver’s rule for deleting stuffed bits is
changed accordingly)?

Overhead of bit stuffing■ What is the overhead of bit stuffing (assume flag = 01j0)?

◆ if j ↗ ⇒ less stuffing but longer flag
◆ if j ↘ ⇒ more stuffing but shorter flag

■ For the sake of analysis, assume a random string of bits with p(0) = p(1) = 1/2

◆ insertion after ith bit occurs with probability (1/2)j

0 1 . . .1
︸ ︷︷ ︸

j−1

↓

◆ also insertion after ith bit occurs with probability (1/2)2j−1

0 1 . . . 1
︸ ︷︷ ︸

j−1

1 . . . 1
︸ ︷︷ ︸

j−1

↓

◆ since (1/2)2j−1 << (1/2)j , we can ignore such event and events of insertion dur to yet longer strings
of 1’s

■ The probability of stuffing after the ith bit is approximately 2−j , which is also E[stuffed @ i]
■ By linearity of expectation, E[stuffed|K] ≈ K2−j (be careful at boundary), where K is the length of the

frame

Overhead of bit stuffing (cont.)
■ From previous slide

E[stuffed] = E[K]2−j

E[overhead] = E[K]2−j

︸ ︷︷ ︸

stuffed

+ j + 2
︸ ︷︷ ︸

flag

■ Minimizing with respect to j, we need smallest j such that

E[K]2−j + j + 2 < E[K]2−(j+1) + (j + 1) + 2

j j + 1

E[k]2−(j+1) < 1

■ The smallest j that satisfies above is j = blog2 E[k]c
■ We can show that (homework?)

log2 E[K] + 2.914 ≤ E[overhead] ≤ log2 E[K] + 3

Can we do better?

■ Length field based framing and bit oriented framing are comparable in their overhead

≈ log2 K

where K is the length of the frame
■ Can we do better? Information theory tells us NO.
■ Essentially, we are encoding information about the length of the frame at the sending DLC and

transmitting it to the receiving DLC
■ At least we need a number of bits equal to the entropy

H =
Kmax∑

k=1

p(k) log2

1

p(k)

When distribution is uniform, i.e. p = 1

Kmax

, H = log2 Kmax.

Error detection

■ All framing techniques are sensitive to errors

◆ error in DLE ETX
◆ error in length field (re-sync needed)
◆ error in flag

■ flag ruined (frame disappears)
■ flag created by error (extra frame appears)

◆ error in data itself

■ Flag approach is least sensitive to errors because a flag will eventually appear

◆ the only thing is that an erroneous packet/frame is created
◆ but this can be removed by error detection techniques

■ Error detection is used by receiving DLC to determine if a frame contains errors
■ If frame contains errors, receiver requires the transmitter to resend the frame

How to detect errors?

■ The problem (simply stated)

◆ Assume that DLC knows where frames begin and end (solved earlier)
◆ Determine which frames contain errors

■ Error cannot be detected by analyzing the packet itself (why?)
■ Therefore, extra bits must be used

◆ Parity check

■ single parity
■ multiple parity (e.g. horizontal and vertical)

◆ Cyclic Redundancy Check CRC

Single parity check

■ Add one parity bit
■ Parity bit is 1 if frame contains ODD number of 1’s, and 0 otherwise

◆ e.g. 1001010 1

◆ e.g. 0111010 0

■ Therefore, a frame always contains an even number of 1’s
■ Receiver counts number of 1’s

◆ ODD number of 1’s: an error must have occurred
◆ EVEN number of 1’s: interpret as no error (why?)

■ even number of errors cannot be detected!
■ p(undetected error) =

∑

i even

(
k

i

)
pi(1 − p)i assuming independent errors (simplification),

where k is the length of the frame, p is the probability of error (binary symmetric channel)

Horizontal and vertical parity checks

■ Data is visualized as a rectangular array

1 0 0 1 0 1 0
0 1 1 1 0 1 0
1 1 1 0 0 0 1
1 0 0 0 1 1 1
0 0 1 1 0 0 1

■ Parity bit is computed for every row and every column
■ If an even number of errors is confined to a single row, each of them can be detected by the

corresponding column parity checks (and vice-versa)

Horizontal and vertical parity checks

■ Data is visualized as a rectangular array

1 0 0 1 0 1 0 1
0 1 1 1 0 1 0 0
1 1 1 0 0 0 1 0 horizontal checks
1 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1
1 0 1 1 1 1 1 0 ← always consistent with both checks

(why?) (addition modulo 2)

vertical checks

■ Parity bit is computed for every row and every column
■ If an even number of errors is confined to a single row, each of them can be detected by the

corresponding column parity checks (and vice-versa)

Horizontal and vertical parity checks

■ Data is visualized as a rectangular array

1 0 0 1 0 1 0 1
0 1 1 1 0 1 0 0

1 1 1 0 0 0 1 0 horizontal checks
1 0 0 0 1 1 1 0

0 0 1 1 0 0 1 1
1 0 1 1 1 1 1 0 ← always consistent with both checks

(why?) (addition modulo 2)

vertical checks

■ Parity bit is computed for every row and every column
■ If an even number of errors is confined to a single row, each of them can be detected by the

corresponding column parity checks (and vice-versa)
■ Some errors are still undetected

◆ e.g. any 4 errors forming a rectangle

Arbitrary parity check codes
■ Parity check code is simply addition modulo 2

s1 s2 . . . sk
︸ ︷︷ ︸

Kbit frame

c1 c2 . . . cL
︸ ︷︷ ︸

Lbit parity check

■ every ci is the sum of some bits in s1 . . . sK

ci =

K∑

j=1

αijsj

where α is an L × K 0-1 matrixs1 s2 s3 c1 c2 c3 c4

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 0 1 1 1 c1 = s1 + s3

0 1 1 1 0 1 0 c2 = s1 + s2 + s3

1 0 0 1 1 1 0 c3 = s1 + s2

1 0 1 0 0 1 1 c4 = s2 + s3

1 1 0 1 0 0 1
1 1 1 0 1 0 0

α =







1 0 1
1 1 1
1 1 0
0 1 1







Effectiveness of a code

K L
︸ ︷︷ ︸

codeword

The effectiveness of a code is usually measured by three parameters

■ minimum distance of the code d: the smallest number of errors that can convert one code word
into another

■ burst detecting capability

◆ burst = number of bits from first error to last error (inclusive)
◆ defined as: largest integer B such that a code can detect all bursts ≤ B

■ probability that a random string is accepted as error free

◆ useful when framing is lost, e.g. check code is random with respect to received frame
◆ We have 2K codewords (why?) and 2K+L random strings
◆ therefore, the probability is 2−L

Effectiveness of a code (cont.)

■ Minimum distance d

◆ single parity:

◆ horz. and vert. parity:

■ Burst detecting capability B

◆ single parity:

◆ horz. and vert. parity (assumes data sent by rows):

Cyclic Redundancy Check

■ For convenience, denote the data bits as

sK−1, sK−2, . . ., s0

■ Represent the string as a polynomial

s(x) = sK−1x
K−1 + sK−2x

K−2 + . . . + s1x + s0

■ Similarly, we can represent the CRC (with L bits) as

c(x) = cL−1x
L−1 + cL−2x

L−2 + . . . + c1x + c0

■ The whole frame can be represented as a polynomial

f(x) = s(x)xL + c(x) = sK−1
︸ ︷︷ ︸

xL+K−1 + . . . + s0
︸︷︷︸

xL + cL−1
︸︷︷︸

xL−1 + . . . + c0
︸︷︷︸

■ Why this polynomial representation? because we are going to obtain c as c(x) by dividing s(x)xL by some
polynomial g(x)

Obtaining c(x)

■ We know si (data) for i = 0 . . . K − 1
■ How do we compute ci (CRC) for i = 0 . . . L − 1?

◆ let g(x) = xL + gL−1x
L−1 + . . . + g1x + 1 be given (gL = g0 = 1)

◆ then

c(x) = Remainder

[

s(x)xL

g(x)

]

↖ division modulo 2

◆ result is a degree L − 1 polynomial ⇒ L bits

■ Example: s = 101 (K = 3) and g(x) = x3 + x2 + 1 (L = 3)

◆ s(x) =?
◆ s(x)xL =?
◆ divide s(x)xL by g(x) and obtain remainder (i’ll do it on the board?)

Another example

s = 110101

g(x) = x3 + 1

s(x) = x5 + x4 + x2 + 1

s(x)xL = x8 + x7 + x5 + x3

x8 + x7 + x5 + x3 x3 + 1
x8 + x5 x5+x4+x+1
x7 + x3

x7 + x4

x4 + x3

x4 + x
x3 + x
x3 + 1
x + 1

c(x) = 0.x2 + 1.x + 1 (L = 3) ⇒ c = 011

110101 011

Using bits only

s = 110101

g(x) = x3 + 1 (L = 3)

g = 1 0 0 1
↓ ↓ ↓ ↓
x3 x2 x1 x0

L
︷ ︸︸ ︷

s(x)xL ⇒ 1 1 0 1 0 1 0 0 0
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
x8 x7 x6 x5 x4 x3 x2 x1 x0

Using bits only (cont.)

1 1 0 1 0 1 0 0 0 1 0 0 1

1 0 0 1 1 1 0 0 1 1

1 0 0 0

1 0 0 1

0 0 1 1

0 0 0 0

0 1 1 0

0 0 0 0

1 1 0 0

1 0 0 1

1 0 1 0

1 0 0 1

0 1 1

Using bits only (cont.)

1 1 0 1 0 1 0 0 0 1 0 0 1

1 0 0 1 1 1 0 0 1 1

1 0 0 0

1 0 0 1

0 0 1 1

0 0 0 0

0 1 1 0

0 0 0 0

1 1 0 0

1 0 0 1

1 0 1 0

1 0 0 1

0 1 1

■ Multiply g by first bit
■ Add
■ Shift
■ Can be implemented using a feedback shift reg-

ister

Feedback shift register

g0 g1 g2 gL-2 gL-1

s0 … sK-L-1

sK-L sK-L+1 sK-2 sK-1

■ Register is initialized with first L bits of s
■ After K shifts, switch is moved and CRC is read

How does c(x) help?

s(x)xL = g(x)z(x) + c(x)

s(x)xL + c(x) = g(x)z(x) + c(x) + c(x)
︸ ︷︷ ︸

0

(modulo 2)

s(x)xL + c(x) = g(x)z(x)

f(x) = g(x)z(x)

■ Polynomial representation of the frame is multiple of g(x)
■ Assume f(x) received as y(x)
■ Receiver DLC computers

Remainder

[
y(x)

g(x)

]

◆ if remainder is not zero ⇒ error in frame
◆ if remainder is zero, declare the frame error free

Undetected errors

■ Assume error is e(x), i.e. y(x) = f(x) + e(x)

■ Then, y(x)
g(x) = f(x)

g(x) + e(x)
g(x)

■ Therefore, we have undetected errors iff e(x) 6= 0 divisible by g(x)
■ Single errors are always detected

◆ assume undetected, i.e. e(x) = xi = g(x)z(x) for some i
◆ since g(x) = xL + . . . + 1, multiplying g(x) by any z(x) 6= 0 cannot produce xi (must produce at least

2 terms)

■ g(x) can be chosen such that

◆ all odd number of errors are detected
◆ all double errors are detected (if K + L < 2L)
◆ therefore, minimum distance d = 4
◆ burst detecting capability B = L
◆ probability of random string accepted is 2−L

■ e.g. (L=16) g(x) = x16 + x15 + x2 + 1 CRC-16
■ e.g. (L=16) g(x) = x16 + x12 + x5 + 1 CRC-CCITT
■ e.g. (L=32) g(x) = ... (see book page 64)

	DLC
	Framing
	Character based framing
	Character based framing (cont.)
	Length field
	Maximum frame size
	Maximum frame size (cont.)
	Fixed length packets/frames
	Bit oriented framing
	Bit stuffing
	Overhead of bit stuffing
	Overhead of bit stuffing (cont.)
	Can we do better?
	Error detection
	How to detect errors?
	Single parity check
	Horizontal and vertical parity checks
	Horizontal and vertical parity checks
	Horizontal and vertical parity checks
	Arbitrary parity check codes
	Effectiveness of a code
	Effectiveness of a code (cont.)
	Cyclic Redundancy Check
	Obtaining c(x)
	Another example
	Using bits only
	Using bits only (cont.)
	Using bits only (cont.)
	Feedback shift register
	How does c(x) help?
	Undetected errors

