
Computer Networks

Framing

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

“Who framed Roger rabbit”?
A detective, a woman, and a rabbit in a network of trouble

1 Introduction

We will skip the physical layer and the detail of how communication signals are sent
and received. In doing so, we are simply going to assume (a correct assumption) that
we are capable of sending bits over a single link. Using this abstraction, the DLC
layer becomes responsible for reliable transmission of packets over a single link.
Reliable transmission of packets means that every packet is delivered once, only once,
without errors, and in order. To achieve this goal, the DLC layer performs three
operations:

• Framing: determines start and end of packets (all we see is a string of bits) and
their order by inserting packet headers

• Error detection: determines when errors exist using packet trailers

• Error correction: retransmits packets containing errors

2 Framing

The main problem is to decide where successive packets start and end. Therefore, the
DLC encapsulates the packet into a frame by adding its own header and trailer.

packetheader trailer

frame

Figure 1: From packet to frame

Moreover, if there is a period of idle fills between successive frames (a synchronous
bit pipe keeps on sending even if there is no data), it becomes also necessary to separate

1

idle fills from frames. Even when idle fills are replaced by dead periods (intermittent
bit pipe), the problem is not simplified, because often there are no dead periods.

For instance, where is the data in the following string of bits:

. . . 01011010110010110101101110101110 . . .

2.1 Character based framing

Character based codes, such as ASCII (7 bits and 1 parity bit), provide binary repre-
sentation for keyboard characters and terminal control characters. The idea in char-
acter based framing is that such codes can also provide representation for various
communication characters:

• SYN: a string of SYN characters provide idle fill between frames when a sending
DLC has no data to send (but a synchronous modem requires bits)

• STX: start of text

• ETX: end of text

SYN STX header packet ETX CRC SYN SYNSYN

frame

trailer added by DLC
for error detection

(later)

Figure 2: Character based frame

One disadvantage of character based framing is that the frame must contain an
integer number of characters; otherwise, the characters cannot be read correctly. This
also raises a question: how do we send binary data? For instance, a packet is a binary
string of arbitrary length. Even more important is that a packet may possibly contain,
say the ETX character, which could be wrongly interpreted as end of frame.

To solve these problems, a special control character DLE (Data Link Escape) is
inserted before any intentional use of the communication control characters. The DLE
character is not inserted before the possible appearance of these characters as part of
the binary data. Of course this raises another question: what if DLE itself appears
in the data? Well, then we can insert a DLE before each appearance of DLE in the
data. For example DLE ETX (but not DLE DLE ETX) is end of frame, and DLE
DLE ETX (but not DLE DLE DLE ETX) is DLE ETX in the data.

SYN STX header packet ETX CRC SYN SYNSYN

frame

DLE DLE

Figure 3: The DLE escape character

Character based framing adds too much overhead; for instance, at least 6 charac-
ters/packet need to be added for synchronous bit pipes: SYN SYN DLE STX . . .
DLE ETX. This was the primary framing method from 1960 to 1975, e.g. ARPANET.

2.2 Length field

The basic problem as seen so far is to inform the receiving DLC where each idle fill
ends and where each frame ends. In principle, an idle fill is easy to identify because
it is represented by a fixed string. The end of a frame, however, is harder to indicate
because the frame consists of arbitrary and unknown bit string.

Therefore, one solution is to include a length field of certain number of bits in the
header (e.g. DECNET).

Idle fill ||||| packet CRC Idle fill header packet CRC

header

length

Figure 4: Length field in header

As it can be seen from the above figure, once synchronized, DLC can always tell
where the next frame starts. However, one drawback of this technique is the difficulty
to recover from errors in the length field; for instance, a resynchronization is needed
after such an error.

Another drawback of this technique is that the length field restricts the packet
size; the length field must contain at least blog2 MaxFrameSizec + 1 bits (that’s
the overhead). Therefore, if L is the size of the length field in bits, then L >
log2 MaxFrameSize and MaxFrameSize < 2L bits.

2.3 Fixed length packets/frames

In networks with fixed length packets, the length field is implicit (not needed) because
all packets (and hence frames) have the same size. An example of such networks is
ATM, where all packets are 53 bytes long. This framing technique requires synchro-
nization upon initialization. Another drawback is that message length often not a
multiple of packet size. In this case, the last packet of the message will contain idle
fills (what happens to the overhead?)

2.4 Bit oriented framing

In character based framing, DLE ETX indicates the end of the frame, and it is avoided
within the frame itself by doubling each DLE character in the data. In bit oriented
framing, a special binary flag indicates the end of the frame, and it is avoided within
the frame itself by using a technique called bit stuffing. Therefore, the concept is the
same, but the main difference is that a flag, unlike DLE ETX, can be of any length
(later we see how to set that length to minimize the overhead). Standard protocols
use 01111110 as the binary flat, we denote it by 0160. The same flag can be used to
indicate the start of the frame.

01111110 01111110

Standard DLCs have also an abort capability in which a frame can be aborted
by sending seven or more consecutive 1’s (15 consecutive 1’s mean the link is idle).
Therefore, 0111111, i.e. 016 is the actual bit string that must be avoided in the data
by bit stuffing.

Bit stuffing was invented by IBM in 1970, and works as follows: The sender DLC
inserts (stuffs) a 0 after each appearance of five consecutive 1’s, and appends the
flag 0160 (without stuffing) at the end of the frame. The receiver DLC deletes the
first 0 after each string of five consecutive 1’s. If six consecutive 1’s are seen, this is
interpreted as the end of the frame.

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0
0 0 0 0

stuffed bits

Figure 5: Bit stuffing

Something to think about: which ones of the above stuffed bits can be avoided
(provided the receiver’s rule for deleting stuffed bits is changed accordingly)?

Assume that the flag has the pattern 01j0. How long should the flag be. Let us
consider the overhead. On one hand, if j increases, we have less stuffing but a longer
flag. On the other hand, if j decreases, we have more stuffing but a shorter flag. For
the sake of our analysis, let us assume a random string of bits with p(0) = p(1) = 1/2.
Therefore, insertion after the ith bit occurs with probability (1/2)j .

0 1 . . . 1︸ ︷︷ ︸
j−1

↓

Also another type of insertion after the ith bit occurs with probability (1/2)2j−1

0 1 . . . 1︸ ︷︷ ︸
j−1

1 . . . 1︸ ︷︷ ︸
j−1

↓

Since (1/2)2j−1 << (1/2)j , we can ignore such event and events of insertion due to
yet longer strings of 1’s. The probability of stuffing after the ith bit is approximately
2−j , which is also E[# stuffed bits @ i], the expected number of insertions after the
ith bit. By the linearity of expectation, E[# stuffed bits |K] ≈ K2−j (be careful at
boundary), where K is the length of the frame. Therefore,

E[# stuffed bits] = E[K]2−j

E[overhead] = E[K]2−j

︸ ︷︷ ︸
stuffed

+ j + 2︸︷︷︸
flag

Minimizing with respect to j, we need smallest j such that

E[K]2−j + j + 2 < E[K]2−(j+1) + (j + 1) + 2

j j + 1

Figure 6: Minimizing overhead

E[k]2−(j+1) < 1

The smallest j that satisfies the above inequality is j = blog2 E[k]c. We can show
that (homework?):

log2 E[K] + 2.914 ≤ E[overhead] ≤ log2 E[K] + 3

2.5 What is the best overhead?

Length field based framing and bit oriented framing are comparable in their overhead,

≈ log2 K

where K is the length of the frame. Can we do better? Information theory tells us
NO. Essentially, we are encoding information about the length of the frame at the
sending DLC and transmitting it to the receiving DLC. At least we need a number of
bits equal to the entropy

H =

Kmax∑
k=1

p(k) log2

1

p(k)

When distribution is uniform, i.e. p = 1
Kmax

, H = log2 Kmax.

2.6 Maximum packet size

Recall that the transport layer is the one responsible for breaking messages into pack-
ets. So how should the transport layer choose the maximum packet size? Practically
speaking, this is not a big deal since IP fragments packets further if necessary. Usually
packet size is about 1500 bytes (from Ethernet). But theoretically speaking, for a
given overhead of V bits, what is the best maximum packet size Kmax?

Let M be the message length. Then we have

M + d M

Kmax
eV

bits to send

Kmax V Kmax V Kmax V Rest V

The overhead per message is d M
Kmax

eV . If Kmax increases, we have a small over-
head per message; therefore, less bits to transmit. But since the message might need to
traverse many links, a larger packet size may result in a slower delivery time, because
each intermediate node must wait until it completely receives a packet before relaying
it.

1
2 3 4

j

sender

receiver

Figure 7: Traversing links

This additional total waiting time can be computed as:

(Kmax + V)(j − 1)

c

where c is the capacity of a link in bps (bandwidth). Therefore,

• Kmax ↗ ⇒ small overhead per message, larger wait

• Kmax ↘ ⇒ bigger overhead, but smaller wait

Which value of Kmax achieves the best tradeoff? Let us minimize the time to
deliver the message. The time needed for the message to traverse j links is:

T =
(Kmax + V)(j − 1)

c
+

M + d M
Kmax

eV
c

+ P + Q

where P and Q are the propagation delay and the queuing delay respectively.
Therefore, the expected value of T is approximately given by:

E[T] =
(Kmax + V)(j − 1)

c
+

E[M] + E[M]
Kmax

V

c
+ P + Q

and we need to minimize

Kmax(j − 1) +
E[M]

Kmax
V

By taking the first derivative with respect to Kmax and setting it to zero, we get

Kmax =

√
E[M]V

j − 1

References

Dimitri Bertsekas and Robert Gallager, Data Networks
Larry Peterson and Bruce Davie, Computer Networks: A Systems Approach

