
Data Communication Networks

Lecture 3

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

A flavor of distributed algorithmsthe coordinated attack problem . 2
Fromal setting. 3
Fromal setting. 4
. 5
. 6
. 7
. 8
. 9
. 10

So... 11
Stop and Wait . 12
Stop and Wait (cont.) . 13
Stop and Wait (cont.) . 14
Algorithm . 15
Unbounded sequence numbers . 16
Algorithm . 17
Throughput of Stop and Wait . 18
Sliding Window . 19
Sliding Window . 20
Stop and Wait vs. Sliding Window . 21
Algorithm . 22
Buffers . 23
Algorithm . 24
Unbounded sequence numbers (again...) . 25
Why p ≥ m + n ? . 26
But.... 27
Exercise . 28
Benefits of Sliding Window . 29

1

A flavor of distributed algorithms
the coordinated attack problem

■ Three armies

◆ two blue
◆ one red
◆ the red army separates the two blue armies

■ Attacking

◆ if blue armies attack simultaneously, they win
◆ if they attack separately, the red army wins

■ Communication

◆ the only communication between the blue
armies is to send a messenger through the
red army

◆ messenger can be captured ⇒ message un-
delivered

■ How to coordinate?

Fromal setting

■ Denote two blue armies by A and B
■ A and B both start with an individual decision, i.e. either 1 (let’s attack) or 0 (let’s not attack)
■ A and B need to agree on either 0 or 1 (using some algorithm)

◆ A and B can exchange messages
◆ messages can be lost
◆ the final agreement must be one of the original decisions (why?)

■ Find an algorithm to reach agreement

Fromal setting

■ Denote two blue armies by A and B
■ A and B both start with an individual decision, i.e. either 1 (let’s attack) or 0 (let’s not attack)
■ A and B need to agree on either 0 or 1 (using some algorithm)

◆ A and B can exchange messages
◆ messages can be lost
◆ the final agreement must be one of the original decisions (why?)

■ Find an algorithm to reach agreement

Impossibility result: There is no algorithm that correctly solves the problem if messages can be lost!

1 1

A B

■ Assume such an algorithm exists
■ Both A and B start with 1
■ They must both decide 1

1 1

A B

■ Last message from A lost
■ Execution looks the same to A
■ A decides 1
■ B must also decide 1

1 1

A B

■ Last message from B lost
■ Execution looks the same to B
■ B decides 1
■ A must also decide 1

1 1

A B

■ Repeat the argument until all messages are
lost

■ Both A and B still decide 1

1 0

A B

■ Assume B’s original decision is changed to 0
■ Execution looks the same to A
■ A decides 1
■ B must also decide 1

0 0

A B

■ Assume A’s original decision is changed to 0
■ Execution looks the same to B
■ B decides 1
■ A must also decide 1
■ Contradicts the requirement for final decision
■ Therefore, such algorithm does not exist

So...

■ How can we agree on anything in presence of message loss?
■ The problem is in the setting itself

◆ Purely theoretical result
◆ For most problems of communication we only require that “eventually something good will

happen”
◆ A might be required to wait for a confirmation from B of this “eventuality”

■ There is a probability > 0 that a message will be received

◆ send multiple messengers (coordinated attack problem)
◆ re-send a message (communication)

A sends a packet ... A does not know if B got the packet... A may resend... B sends an acknowledgement... B does not know

that A got the ack... B may resend... A sends another packet upon receiving ack... A does not know that B got the packet... A

may resend... B sends an acknowledgement... B does not know that A got the ack... B may resend...

At any point in time, there is no complete agreement... But there is eventual agreement with high
probability.

Stop and Wait

■ Stop and Wait

◆ A sends a packet to B
◆ A waits for an acknowledgement from B

■ Problem

◆ either packet or ack may be lost (due to errors)
◆ A might wait forever
◆ use timeout

A

B

0

packet 0

Ack

0

timeout

which packet?

time at A

time at B

Stop and Wait (cont.)

■ A can put a sequence number SN in the frame header
■ B can use the sequence number to tell which is which

◆ if B receives an error free packet, it sends an Ack
◆ if B receives a packet with error, it sends a Nak (negative acknowledgement)

A

B

0

packet 0

Ack

0

timeout

which packet?

SN 1 2

Ack Nak

Problem with second Ack?

Stop and Wait (cont.)

■ Ack and Nak must have sequence numbers too
■ B sends a request number RN of the next expected packet

◆ upon receipt of each packet
◆ periodic intervals
◆ arbitrary times
◆ piggyback RN in frame header for packets going from B to A

packet CRCSN RN

Algorithm

A
SN ← 0
while (more packets)

accpet packet from higher layer
ack ← false
while (!ack)

send packet in frame with sequence number SN
wait(timeout)
if received frame from B with RN > SN

SN ← RN
ack ← true

B
RN ← 0
while (true)

if frame with SN = RN received
release packet to upper layer
RN ← RN + 1

with probability p > 0 send frame to A with RN

Unbounded sequence numbers

■ Sequence numbers SN and RN are unbound
■ How to fit in frame header?

Increment SN and RN mod 2 ⇒ They alternate between 0 and 1

Would that work?

Need an extra condition: ordered delivery (why?)

A

B

0 1 2 3 4

Algorithm

A
SN ← 0
while (more packets)

accpet packet from higher layer
ack ← false
while (!ack)

send packet in frame with sequence number SN
wait(timeout)
if received frame from B with RN 6= SN

SN ← RN
ack ← true

B
RN ← 0
while (true)

if frame with SN = RN received
release packet to upper layer
RN ← (RN + 1) mod 2

with probability p > 0 send frame to A with RN

Throughput of Stop and Wait

■ One packet is sent from A to B per RTT

◆ B waits for packet
◆ A waits for ack

■ Example

◆ link is 1.5 Mbps
◆ RTT is 45 ms
◆ frame size = 1 KB

Therefore, we send 1000 × 8 bits every 0.045 + (1000 × 8)/(1.5 × 106) seconds, i.e. ≈ 160 Kbps
■ We would like A to be able to send up to 10 frames before having to wait for acknowledgement
■ ARQ Sliding Window ARQ

Sliding Window

■ In the previous scenario, we would like sender to be ready to transmit the 11th frame at pretty
much the same moment that the Ack for the first frame arrives

■ The sender keeps a window of frames that if can send
■ If the window size is n, the sender can transmit any frame with sequence number SN to

SN + n− 1 before receiving RN > SN

SN SN + n – 1

n

■ In Stop and Wait, the window size is 1, so the sender can send frames with sequence numbers in
[SN,SN + n + 1] = [SN,SN]

■ As before, if the sender receives a frame with request RN > SN , it sets SN to RN

Sliding Window

■ Similarly, the receiver keeps a window of frames that is willing to accept (but not necessarily
deliver to the upper layer)

■ If the window size is m, the receiver can accept any frame with sequence number RN to
RN + m− 1 before receiving SN = RN

RN RN + m – 1

m

■ In Stop and Wait, the window size is 1, so the receiver can accept frames with sequence numbers
in [RN,RN + m + 1] = [RN,RN]

■ Upon receiving a packet with SN = RN , the receiver sets RN to RN + r + 1, such that all
packets with sequence numbers RN to RN + r have been received

■ Usually, m ≤ n, e.g. m = 1 (Go Back n) or m = n

Stop and Wait vs. Sliding Window

A

B

A

B

n

½ RTT

Algorithm

A
SN ← 0
while (more packets)

accpet packets from higher layer
ack ← false
while (!ack)

send packets in frames with sequence numbers SN to SN + n− 1
wait(timeout)
if received frame from B with RN > SN

SN ← RN
ack ← true

B
RN ← 0
while (true)

if frame with SN ∈ [RN, RN + m] received
release packets RN to RN + r to upper layer such that all r packets are received
RN ← RN + r + 1

with probability p > 0 send frame to A with RN

Buffers
■ The sender needs to buffer at most n frames

◆ if buffer is full, the sender does not accept more packets from upper layer
◆ a frame with sequence number SN is stored in buf [SN mod n]

12 13 14 15

0 1 2 3 4 5 6 7

16

17SN

n = 8

■ Similarly, the receiver needs to buffer at most m ≤ n frames

◆ if a frame is received with SN ∈ [RN,RN + m− 1], it is accepted into the buffer
◆ a frame with sequence number SN is stored in buf [SN mod m]

16 14

0 1 2 3 4

13SN

m = 5, RN = 12

■ Where does the receiver store frames with SN = 12 and SN = 17?

Algorithm

A
SN ← 0
. . .
if buf not full

accept a packet and store the new frame in the buffer
. . .
if received a frame with RN > SN

free buf [SN mod n] . . . buf [(RN − 1) mod n]
SN ← RN

B
RN ← 0
. . .
if received a frame with SN ∈ [RN, RN + m− 1]

accept the frame and store it in buf [SN mod m]
if SN = RN

RN ← RN + r + 1 such that buf [(SN + i) mod m] = SN + i, i = 0 . . . r
free buf [SN mod m] . . . buf [(SN + r) mod m]

with probability p > 0 send a frame to A with RN

Unbounded sequence numbers (again...)
■ Sequence numbers SN and RN are unbound
■ How to fit in frame header?
■ For Stop and Wait, we used SN mod p and RN mod p with p = 2
■ Would that work with Sliding Window?

◆ The receiver needs to at least distinguish all sequence numbers in the sender’s window
◆ Therefore, we need to use SN mod p and RN mod p for some p (now are assume ordered

delivery)

■ Would p = n work?

◆ p = n is enough to distinguish all sequence numbers in the sender’s window
◆ looking back at Stop and Wait (n = 1), we would argue for p = 1
◆ The receiver needs to at least distinguish all sequence numbers in the sender’s window plus a

number that it has not yet seen
◆ we need p ≥ n + 1
◆ that works for Go Back n (m = 1)

■ In general, we need p ≥ n + m

Why p ≥ m + n ?

n

m

■ If Acks are lost, receiver will be seeing the light packets (and some dark ones)
■ If Acks are not lost, receiver will be seeing the dark packets
■ Therefore, all light and dark packets must be distinguished by the receiver

◆ i am seeing these because Ack was lost?
◆ or i am seeing these because Ack was not lost?

■ Therefore, p ≥ m + n

But...

■ Although theoretically p ≥ m + n should be enough, with our particular implementation, it is not
■ Consider the following situation

αn p-1… …

p

n-10

?

■ When p is changes to 0, it will override frame n
■ This cannot happen if p is a multiple of n
■ If m = n and p = 2n, we’re fine
■ What if m < n?

◆ set p such that p ≥ m + n and p is multiple of both m and n
◆ change implementation to use a circular queue, and keep a pointer to the head of the queue

Exercise

Think about how you would change the algorithm presented previously

Benefits of Sliding Window

■ Reliably deliver frames across an unreliable link (can be also used to reliably deliver messages
across an unreliable network)

■ Preserve the order in which frames are transmitted

■ flow control by changing window size and informing sender of how many frames it has room to
receive (can also be generalized across network)

	A flavor of distributed algorithms the coordinated attack problem
	Fromal setting
	Fromal setting
	
	
	
	
	
	
	So...
	Stop and Wait
	Stop and Wait (cont.)
	Stop and Wait (cont.)
	Algorithm
	Unbounded sequence numbers
	Algorithm
	Throughput of Stop and Wait
	Sliding Window
	Sliding Window
	Stop and Wait vs. Sliding Window
	Algorithm
	Buffers
	Algorithm
	Unbounded sequence numbers (again...)
	Why pm+n ?
	But...
	Exercise
	Benefits of Sliding Window

