Data Communication Networks

Lecture 3

Saad Mneimneh Computer Science Hunter College of CUNY New York

A flavor of distributed algorithmsthe coordinated attack problem	2
Fromal setting	3
Fromal setting	4
	5
	6
	7
	8
	9
	10
So	11
Stop and Wait	12
Stop and Wait (cont.).	13
Stop and Wait (cont.).	14
Algorithm	15
Unbounded sequence numbers	-0 16
Algorithm	17
Throughput of Stop and Wait	18
	10
Sliding Window	20 20
Stop and Wait vs. Sliding Window	20 21
Algorithm	21 22
Rufforc	22 72
Algorithm	23 24
	24 25
Unbounded sequence numbers (again) \ldots	20 26
With $p \ge m + n + \dots + \dots$	20 27
	21
	28
Benefits of Sliding Window	29

Fromal setting

- $\blacksquare \quad \text{Denote two blue armies by } A \text{ and } B$
- \blacksquare A and B both start with an individual decision, i.e. either 1 (let's attack) or 0 (let's not attack)
- A and B need to agree on either 0 or 1 (using some algorithm)
 - \bullet A and B can exchange messages
 - messages can be lost
 - the final agreement must be one of the original decisions (why?)
- Find an algorithm to reach agreement

Fromal setting

- $\blacksquare \quad \text{Denote two blue armies by } A \text{ and } B$
- A and B both start with an individual decision, i.e. either 1 (let's attack) or 0 (let's not attack)
- \blacksquare A and B need to agree on either 0 or 1 (using some algorithm)
 - \bullet A and B can exchange messages
 - messages can be lost
 - the final agreement must be one of the original decisions (why?)
- Find an algorithm to reach agreement

Impossibility result: There is no algorithm that correctly solves the problem if messages can be lost!

So...

- How can we agree on anything in presence of message loss?
- The problem is in the setting itself
 - Purely theoretical result
 - For most problems of communication we only require that "eventually something good will happen"
 - A might be required to wait for a confirmation from B of this "eventuality"
- There is a probability > 0 that a message will be received
 - send multiple messengers (coordinated attack problem)
 - re-send a message (communication)

A sends a packet ... A does not know if B got the packet... A may resend... B sends an acknowledgement... B does not know that A got the ack... B may resend... A sends another packet upon receiving ack... A does not know that B got the packet... A may resend... B sends an acknowledgement... B does not know that A got the ack... B may resend...

At any point in time, there is no complete agreement... But there is eventual agreement with high probability.

Stop and Wait

- Stop and Wait
 - \bullet A sends a packet to B
 - \bullet A waits for an acknowledgement from B
- Problem
 - either packet or ack may be lost (due to errors)
 - A might wait forever
 - use timeout

Stop and Wait (cont.)					
 Ack and Nak must ha B sends a request number 	ave sequence numbe mber RN of the nex	ers too xt expected packet			
 upon receipt of ea periodic intervals arbitrary times piggyback RN in 	ach packet frame header for pa	ackets going from B to J	A		
	SN RN	packet	CRC		

4	Algorithm
<u>A</u> S W	$\frac{4}{8N} \leftarrow 0$ vhile (more packets) accpet packet from higher layer $ack \leftarrow$ false
	while $(!ack)$ send packet in frame with sequence number SN wait(timeout) if received frame from B with $RN > SN$
	$SN \leftarrow RN$ $ack \leftarrow true$
<u>H</u> H	$\frac{3}{N} \leftarrow 0$ while (true) if frame with $SN = BN$ received
	release packet to upper layer $RN \leftarrow RN + 1$ with probability $p > 0$ send frame to A with RN

Unbounded sequence numbers

- $\blacksquare Sequence numbers SN and RN are unbound$
- How to fit in frame header?

Increment SN and $RN \mod 2 \Rightarrow$ They alternate between 0 and 1

Would that work?

Need an extra condition: ordered delivery (why?)


```
Algorithm
\underline{A}
\overline{SN} \leftarrow 0
while (more packets)
       accpet packet from higher layer
       ack \leftarrow \mathsf{false}
       while (!ack)
               send packet in frame with sequence number SN \xspace
               wait(timeout)
               if received frame from B with RN \neq SN
                  SN \leftarrow RN
                  ack \gets \mathsf{true}
\underline{B}
\overline{R}N \leftarrow 0
while (true)
       if frame with SN = RN received
          release packet to upper layer
          RN \leftarrow (RN+1) \bmod 2
       with probability p > 0 send frame to A with RN
```

Throughput of Stop and Wait

- One packet is sent from A to B per RTT
 - B waits for packet
 - ♦ A waits for ack
- Example
 - ♦ link is 1.5 Mbps
 - RTT is 45 ms
 - frame size = 1 KB
- Therefore, we send 1000×8 bits every $0.045 + (1000 \times 8)/(1.5 \times 10^6)$ seconds, i.e. ≈ 160 Kbps
- We would like A to be able to send up to 10 frames before having to wait for acknowledgement
- ARQ Sliding Window ARQ

Sliding Window

- In the previous scenario, we would like sender to be ready to transmit the 11^{th} frame at pretty much the same moment that the Ack for the first frame arrives
- The sender keeps a *window* of frames that if can send
- If the window size is n, the sender can transmit any frame with sequence number SN to SN + n 1 before receiving RN > SN

- In Stop and Wait, the window size is 1, so the sender can send frames with sequence numbers in [SN, SN + n + 1] = [SN, SN]
- As before, if the sender receives a frame with request RN > SN, it sets SN to RN

Sliding Window

- Similarly, the receiver keeps a window of frames that is willing to accept (but not necessarily deliver to the upper layer)
- If the window size is m, the receiver can accept any frame with sequence number RN to RN + m 1 before receiving SN = RN

- In Stop and Wait, the window size is 1, so the receiver can accept frames with sequence numbers in [RN, RN + m + 1] = [RN, RN]
- Upon receiving a packet with SN = RN, the receiver sets RN to RN + r + 1, such that all packets with sequence numbers RN to RN + r have been received
- $\blacksquare \quad \text{Usually, } m \leq n \text{, e.g. } m = 1 \text{ (Go Back } n \text{) or } m = n$

Algorithm

```
\underline{A}
SN \leftarrow 0
while (more packets)
       accpet packets from higher layer
       ack \leftarrow \mathsf{false}
       while (!ack)
              send packets in frames with sequence numbers SN to SN + n - 1
              wait(timeout)
              if received frame from B with RN > SN
                 SN \leftarrow RN
                 ack \gets \mathsf{true}
\frac{\underline{B}}{RN} \leftarrow 0
while (true)
       if frame with SN \in [RN, RN + m] received
          release packets RN to RN + r to upper layer such that all r packets are received
          RN \leftarrow RN + r + 1
       with probability p > 0 send frame to A with RN
```

Buffers

- $\blacksquare \quad \text{The sender needs to buffer at most } n \text{ frames}$
 - if buffer is full, the sender does not accept more packets from upper layer
 - a frame with sequence number SN is stored in $buf[SN \mod n]$

- **\blacksquare** Similarly, the receiver needs to buffer at most $m \leq n$ frames
 - if a frame is received with $SN \in [RN, RN + m 1]$, it is accepted into the buffer
 - a frame with sequence number SN is stored in $buf[SN \mod m]$

• Where does the receiver store frames with SN = 12 and SN = 17?

Algorithm

 $\begin{array}{l} \displaystyle \underbrace{A}{SN \leftarrow 0} \\ \displaystyle & \cdots \\ \displaystyle \text{if } buf \text{ not full} \\ \displaystyle \text{accept a packet and store the new frame in the buffer} \\ \displaystyle & \cdots \\ \displaystyle \text{if received a frame with } RN > SN \\ \displaystyle \text{free } buf[SN \bmod n] \dots buf[(RN-1) \bmod n] \\ \displaystyle SN \leftarrow RN \\ \end{array} \\ \\ \displaystyle \underbrace{\frac{B}{RN \leftarrow 0}} \\ \displaystyle & \cdots \\ \displaystyle \text{if received a frame with } SN \in [RN, RN + m - 1] \\ \displaystyle \text{accept the frame and store it in } buf[SN \bmod m] \\ \displaystyle \text{if } SN = RN \\ \displaystyle RN \leftarrow RN + r + 1 \text{ such that } buf[(SN + i) \bmod m] = SN + i, i = 0 \dots r \\ \displaystyle \text{free } buf[SN \bmod m] \dots buf[(SN + r) \bmod m] \\ \end{array} \\ \\ \displaystyle \text{with probability } p > 0 \text{ send a frame to } A \text{ with } RN \end{array}$

Unbounded sequence numbers (again...)

- $\blacksquare \quad \text{Sequence numbers } SN \text{ and } RN \text{ are unbound}$
- How to fit in frame header?
- $\blacksquare \quad \text{For Stop and Wait, we used } SN \bmod p \text{ and } RN \bmod p \text{ with } p = 2$
- Would that work with Sliding Window?
 - The receiver needs to at least distinguish all sequence numbers in the sender's window
 - Therefore, we need to use $SN \mod p$ and $RN \mod p$ for some p (now are assume ordered delivery)
- Would p = n work?
 - p = n is enough to distinguish all sequence numbers in the sender's window
 - looking back at Stop and Wait (n = 1), we would argue for p = 1
 - The receiver needs to at least distinguish all sequence numbers in the sender's window plus a number that it has not yet seen
 - we need $p \ge n+1$
 - that works for Go Back $n \ (m = 1)$
- $\label{eq:linear} \blacksquare \quad \mbox{In general, we need } p \geq n+m$

But...

- Although theoretically $p \ge m + n$ should be enough, with our particular implementation, it is not
- Consider the following situation

- $\blacksquare \quad \text{When } p \text{ is changes to } 0, \text{ it will override frame } n$
- $\blacksquare \quad \text{This cannot happen if } p \text{ is a multiple of } n$
- If m = n and p = 2n, we're fine
- What if m < n?
 - set p such that $p \ge m + n$ and p is multiple of both m and n
 - change implementation to use a circular queue, and keep a pointer to the head of the queue

Exercise

Think about how you would change the algorithm presented previously

Benefits of Sliding Window

- Reliably deliver frames across an unreliable link (can be also used to reliably deliver messages across an unreliable network)
- Preserve the order in which frames are transmitted
- flow control by changing window size and informing sender of how many frames it has room to receive (can also be generalized across network)