A flavor of distributed algorithms: the coordinated attack problem

Formal setting

Formal setting

Formal setting

Stop and Wait

Stop and Wait (cont.)

Stop and Wait (cont.)

Algorithm

Unbounded sequence numbers

Algorithm

Throughput of Stop and Wait

Sliding Window

Sliding Window

Stop and Wait vs. Sliding Window

Algorithm

Buffers

Algorithm

Unbounded sequence numbers (again...)

Why $p \geq m + n$?

But...

Exercise

Benefits of Sliding Window
A flavor of distributed algorithms
the coordinated attack problem

Three armies
- two blue
- one red
- the red army separates the two blue armies

Attacking
- if blue armies attack simultaneously, they win
- if they attack separately, the red army wins

Communication
- the only communication between the blue armies is to send a messenger through the red army
- messenger can be captured \Rightarrow message undelivered

How to coordinate?

Formal setting

- Denote two blue armies by A and B
- A and B both start with an individual decision, i.e. either 1 (let’s attack) or 0 (let’s not attack)
- A and B need to agree on either 0 or 1 (using some algorithm)
 - A and B can exchange messages
 - messages can be lost
 - the final agreement must be one of the original decisions (why?)

- Find an algorithm to reach agreement
Formal setting

- Denote two blue armies by \(A \) and \(B \)
- \(A \) and \(B \) both start with an individual decision, i.e. either 1 (let’s attack) or 0 (let’s not attack)
- \(A \) and \(B \) need to agree on either 0 or 1 (using some algorithm)
 - \(A \) and \(B \) can exchange messages
 - messages can be lost
 - the final agreement must be one of the original decisions (why?)
- Find an algorithm to reach agreement

Impossibility result: There is no algorithm that correctly solves the problem if messages can be lost!

![Diagram](attachment://diagram.png)

- Assume such an algorithm exists
- Both \(A \) and \(B \) start with 1
- They must both decide 1
- Last message from A lost
- Execution looks the same to A
- A decides 1
- B must also decide 1

- Last message from B lost
- Execution looks the same to B
- B decides 1
- A must also decide 1
Repeat the argument until all messages are lost
Both \(A \) and \(B \) still decide 1

Assume \(B \)'s original decision is changed to 0
Execution looks the same to \(A \)
\(A \) decides 1
\(B \) must also decide 1
Assume A's original decision is changed to 0
- Execution looks the same to B
- B decides 1
- A must also decide 1
- Contradicts the requirement for final decision
- Therefore, such algorithm does not exist

So...

- How can we agree on anything in presence of message loss?
- The problem is in the setting itself
 - Purely theoretical result
 - For most problems of communication we only require that "eventually something good will happen"
 - A might be required to wait for a confirmation from B of this "eventuality"
- There is a probability > 0 that a message will be received
 - send multiple messengers (coordinated attack problem)
 - re-send a message (communication)

At any point in time, there is no complete agreement... But there is eventual agreement with high probability.
Stop and Wait

- Stop and Wait
 - A sends a packet to B
 - A waits for an acknowledgement from B
- Problem
 - either packet or ack may be lost (due to errors)
 - A might wait forever
 - use timeout

Stop and Wait (cont.)

- A can put a sequence number SN in the frame header
- B can use the sequence number to tell which is which
 - if B receives an error free packet, it sends an Ack
 - if B receives a packet with error, it sends a Nak (negative acknowledgement)
Stop and Wait (cont.)

- Ack and Nak must have sequence numbers too
- B sends a request number RN of the next expected packet
 - upon receipt of each packet
 - periodic intervals
 - arbitrary times
 - piggyback RN in frame header for packets going from B to A

<table>
<thead>
<tr>
<th>SN</th>
<th>RN</th>
<th>packet</th>
<th>CRC</th>
</tr>
</thead>
</table>

Algorithm

A

$SN \leftarrow 0$

while (more packets)

 accept packet from higher layer
 $ack \leftarrow false$

 while (ack)

 send packet in frame with sequence number SN
 wait(timeout)

 if received frame from B with $RN > SN$

 $SN \leftarrow RN$
 $ack \leftarrow true$

B

$RN \leftarrow 0$

while (true)

 if frame with $SN = RN$ received

 release packet to upper layer

 $RN \leftarrow RN + 1$

 with probability $p > 0$ send frame to A with RN
Unbounded sequence numbers

- Sequence numbers SN and RN are unbound
- How to fit in frame header?

Increment SN and $RN \mod 2 \Rightarrow$ They alternate between 0 and 1

Would that work?

Need an extra condition: ordered delivery (why?)

Algorithm

A

$SN \leftarrow 0$

while (more packets)

 accept packet from higher layer

 $ack \leftarrow false$

 while (!ack)

 send packet in frame with sequence number SN

 wait(timeout)

 if received frame from B with $RN \neq SN$

 $SN \leftarrow RN$

 $ack \leftarrow true$

B

$RN \leftarrow 0$

while (true)

 if frame with $SN = RN$ received

 release packet to upper layer

 $RN \leftarrow (RN + 1) \mod 2$

 with probability $p > 0$ send frame to A with RN
Throughput of Stop and Wait

- One packet is sent from A to B per RTT
 - B waits for packet
 - A waits for ack

- Example
 - link is 1.5 Mbps
 - RTT is 45 ms
 - frame size = 1 KB

 Therefore, we send 1000×8 bits every $0.045 + (1000 \times 8)/(1.5 \times 10^6)$ seconds, i.e. ≈ 160 Kbps

- We would like A to be able to send up to 10 frames before having to wait for acknowledgement

ARQ Sliding Window ARQ

Sliding Window

- In the previous scenario, we would like sender to be ready to transmit the 11th frame at pretty much the same moment that the Ack for the first frame arrives
- The sender keeps a window of frames that if can send
- If the window size is n, the sender can transmit any frame with sequence number SN to $SN + n - 1$ before receiving $RN > SN$

- In Stop and Wait, the window size is 1, so the sender can send frames with sequence numbers in $[SN, SN + n + 1] = [SN, SN]$
- As before, if the sender receives a frame with request $RN > SN$, it sets SN to RN
Sliding Window

- Similarly, the receiver keeps a window of frames that is willing to accept (but not necessarily deliver to the upper layer).
- If the window size is m, the receiver can accept any frame with sequence number RN to $RN + m - 1$ before receiving $SN = RN$.

```
\[ RN \rightarrow RN + m - 1 \]
```

- In Stop and Wait, the window size is 1, so the receiver can accept frames with sequence numbers in $[RN, RN + m + 1] = [RN, RN]$.
- Upon receiving a packet with $SN = RN$, the receiver sets RN to $RN + r + 1$, such that all packets with sequence numbers RN to $RN + r$ have been received.
- Usually, $m \leq n$, e.g. $m = 1$ (Go Back n) or $m = n$.

Stop and Wait vs. Sliding Window

[Diagram showing the comparison between Stop and Wait and Sliding Window protocols]
Algorithm

A

\[SN \leftarrow 0 \]

\textbf{while} \ (\text{more packets})

\quad \text{accept packets from higher layer}

\quad \text{ack} \leftarrow \text{false}

\quad \textbf{while} \ (\text{ack})

\quad \quad \text{send packets in frames with sequence numbers} \ SN \ \text{to} \ SN + n - 1

\quad \quad \text{wait(timeout)}

\quad \quad \text{if} \ \text{received frame from} \ B \ \text{with} \ RN > SN

\quad \quad \quad \ SN \leftarrow RN

\quad \quad \quad \ ack \leftarrow \text{true}

B

\[RN \leftarrow 0 \]

\textbf{while} \ (\text{true})

\quad \text{if} \ \text{frame with} \ SN \in [RN, RN + m] \ \text{received}

\quad \quad \text{release packets} \ RN \ \text{to} \ RN + r \ \text{to upper layer such that all} \ r \ \text{packets are received}

\quad \quad \quad \ RN \leftarrow RN + r + 1

\quad \quad \text{with probability} \ p > 0 \ \text{send frame to} \ A \ \text{with} \ RN

Buffers

■ The sender needs to buffer at most \(n \) frames

■ if buffer is full, the sender does not accept more packets from upper layer

■ a frame with sequence number \(SN \) is stored in \(\text{buf}[SN \ mod \ n] \)

\(m = 5, RN = 12 \)

■ Similarly, the receiver needs to buffer at most \(m \leq n \) frames

■ if a frame is received with \(SN \in [RN, RN + m - 1] \), it is accepted into the buffer

■ a frame with sequence number \(SN \) is stored in \(\text{buf}[SN \ mod \ m] \)

\(m = 5, RN = 12 \)

■ Where does the receiver store frames with \(SN = 12 \) and \(SN = 17 \)?
Algorithm

A

\[SN \leftarrow 0 \]

\[\ldots \]

if buf not full
 accept a packet and store the new frame in the buffer

\[\ldots \]

if received a frame with \(RN > SN \)
 free \(buf[SN \mod n] \ldots buf[(RN - 1) \mod n] \)
 \(SN \leftarrow RN \)

B

\[RN \leftarrow 0 \]

\[\ldots \]

if received a frame with \(SN \in [RN, RN + m - 1] \)
 accept the frame and store it in \(buf[SN \mod m] \)
 if \(SN = RN \)
 \(RN \leftarrow RN + r + 1 \) such that \(buf[(SN + i) \mod m] = SN + i, i = 0 \ldots r \)
 free \(buf[SN \mod m] \ldots buf[(SN + r) \mod m] \)
 with probability \(p > 0 \) send a frame to \(A \) with \(RN \)

Unbounded sequence numbers (again...)

- Sequence numbers \(SN \) and \(RN \) are unbound
- How to fit in frame header?
- For Stop and Wait, we used \(SN \mod p \) and \(RN \mod p \) with \(p = 2 \)
- Would that work with Sliding Window?
 - The receiver needs to at least distinguish all sequence numbers in the sender’s window
 - Therefore, we need to use \(SN \mod p \) and \(RN \mod p \) for some \(p \) (now are assume ordered delivery)
- Would \(p = n \) work?
 - \(p = n \) is enough to distinguish all sequence numbers in the sender’s window
 - looking back at Stop and Wait \((n = 1)\), we would argue for \(p = 1 \)
 - The receiver needs to at least distinguish all sequence numbers in the sender’s window plus a number that it has not yet seen
 - we need \(p \geq n + 1 \)
 - that works for Go Back \(n \) \((m = 1)\)
- In general, we need \(p \geq n + m \)
Why $p \geq m + n$?

- If Acks are lost, receiver will be seeing the light packets (and some dark ones)
- If Acks are not lost, receiver will be seeing the dark packets
- Therefore, all light and dark packets must be distinguished by the receiver
 - i am seeing these because Ack was lost?
 - or i am seeing these because Ack was not lost?
- Therefore, $p \geq m + n$

But...

- Although theoretically $p \geq m + n$ should be enough, with our particular implementation, it is not
- Consider the following situation

![Diagram](image.png)

- When p is changes to 0, it will override frame n
- This cannot happen if p is a multiple of n
- If $m = n$ and $p = 2n$, we're fine
- What if $m < n$?
 - set p such that $p \geq m + n$ and p is multiple of both m and n
 - change implementation to use a circular queue, and keep a pointer to the head of the queue
Exercise
Think about how you would change the algorithm presented previously

Benefits of Sliding Window

- Reliably deliver frames across an unreliable link (can be also used to reliably deliver messages across an unreliable network)
- Preserve the order in which frames are transmitted
- Flow control by changing window size and informing sender of how many frames it has room to receive (can also be generalized across network)