
Data Communication Networks

Lecture 4

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

Link initialization . 2
Master-slave protocol . 3
Balanced protocol . 4
State diagram for up(event/action) . 5
State diagram for up(event/action) . 6
State diagram for down(event/action) . 7
State diagram for down(event/action) . 8
Transport protocols . 9
UDP . 10
Ports . 11
Port implementation . 12
Last line of defense . 13
TCP . 14
Sliding window . 15
Segments . 16
Segment format. 17
Connection establishment . 18
State diagram for up(event/action) . 19
State diagram for up(event/action) . 20
State diagram for down(event/action) . 21
State diagram for down(event/action) . 22
State diagram for down(event/action) . 23
Sliding window revisited . 24
Receiver side . 25
Sender side . 26
Probing . 27
Wrap around. 28
Window size . 29
How does TCP send data? . 30
Send vs. Wait . 31
Why is a timer bad?. 32
Nagle’s algorithm. 33
Revisit the example . 34
To Nagle or not to Nagle . 35

1

Link initialization
■ Stop and Wait or Sliding Window work correctly assuming correct initialization (e.g. sequence

numbers)

◆ if link fails for a long period of time, transport and/or network layers must take over using
alternative paths

◆ when failed link eventually returns to operation, it is presented with a completley new stream
of packets

◆ nodes on both ends of the link need to synchronize their sequence numbers

alternative route

link fails

sn
sn

sn

rn
rn

rn

■ More importantly, nodes on both ends of the link must agree at any given instant about whether
the link is up or down

■ Come up with a protocol for initializing and disconnecting the link

Master-slave protocol

■ One node, say A is in charge of determining when the link should be up or down
■ Node A then informs node B about the state of the link
■ The messages (for this protocol) from A to B form an alternating sequence of INIT and DISC

messages
■ B responds by ACKI and ACKD

A

B

INIT

ACKI

DISC

ACKD

INIT

up

up

down

down

■ Conceptually, this can be interpreted as Stop and Wait modulo 2: INIT (SN = 1), DISC
(SN = 0), ACKI (RN = 0), ACKD (RN = 1)

Balanced protocol
■ Need both A and B to be able to initialize/disconnect the link (and possibly send state information)
■ Use two master-slave protocols, with node A playing the master for one, and node B playing the master for

the other
■ ACKI and ACKD are piggybacked on INIT and DISC appropriately
■ A node regards the link as up if it is up according to both the A→ B protocol and the B → A protocol
■ Therefore, A sends INIT (or DISC) upon receiving INIT (or DISC), same for B

A

B

INIT
ACKD

INIT
ACKI

ACKI
DISC
ACKI

DISC
ACKD

ACKD

INIT
ACKD

INIT
ACKD ACKI

ACKI

up

up

down

down

■ The initialization part of the protocol

◆ sending INIT,
◆ waiting for both ACKI and INIT from the other side, and
◆ responding to INIT with ACKI

is called the three-way handshake

State diagram for up
(event/action)

down

connect accept

up

Send INIT + Last ACK INIT / INIT + ACKI

INIT + ACKI / ACKI ACKI

■ What if last ack was lost? A thinks connection is up but B thinks it is not up yet

■ What if A closes connection before B knows it went up?

State diagram for up
(event/action)

down

connect accept

up

Send INIT + Last ACK INIT / INIT + ACKI

INIT + ACKI / ACKI ACKI

■ What if last ack was lost? A thinks connection is up but B thinks it is not up yet

◆ B eventually resends INIT

■ What if A closes connection before B knows it went up?

◆ The last ACK with DISC will tell

State diagram for down
(event/action)

up

disconnect close

down

Send DISC + Last ACK DISC / DISC + ACKD

DISC + ACKD / ACKD ACKD

■ What if last ack was lost? A thinks the connection is down but B thinks it is not down yet

■ What if A reopens connection before B knows it went down?

State diagram for down
(event/action)

up

disconnect close

down

Send DISC + Last ACK DISC / DISC + ACKD

DISC + ACKD / ACKD ACKD

■ What if last ack was lost? A thinks the connection is down but B thinks it is not down yet

◆ B eventually resents DISC

■ What if A reopens connection before B knows it went down?

◆ the last ACK with INIT will tell

Transport protocols

InternetInternet

DLC

transport

Transport protocols

■ UDP (User Datagram Protocol)
■ TCP (Transmission Control Protocol)

Internet (best effort)

■ drops messages
■ reorders messages
■ delivers duplicate messages
■ limits message size (MTU, Maximum Trans-

mission Unit)
■ arbitrary delays

We want

■ guaranteed message delivery, once, only
once, and in order

■ large messages
■ flow control
■ multiple application processes on each node

UDP
■ UDP adds a level of demultiplexing to allow multiple application processes to share the network
■ Aside from being a demultiplexer, UDP adds no other functionality to the Internet
■ Therefore, the only issue is the form of address used to identify processes

◆ it is possible to directly identify processes with the OS-assigned process id (pid), but such approach is
only practical in a closed distributed system with one OS

◆ instead, processes are indirectly identified using an abstract locator, called port
◆ UDP header contains a 16 bit port number for both the sender and receiver

source port destination port

length checksum

data

0 16 31

■ But a 16 bit port number means at most 64K possible port numbers

◆ not enough to identify all the processes on all the hosts in the Internet
◆ UDP uses <port, host> pair as demultiplexing key, i.e. a process is identified by a port on a particular

host

Ports

How does a process learn the port for the process to which it wants to send a message?

■ Typically a clients initiates a messages exchange with a server process (recall from sockets, server
listens, client connects)

■ Once a client has contacted the server, the server knows the clients port (recall this is usually
assigned automatically by socket API)

How does the client learn the server’s port to start with?

■ Usually a well known port number

◆ DNS port 53
◆ mail port 25
◆ telnet port 23

Needless to say, the socket API provides an implementation of ports. A port is typically implemented
as a message queue.

Port implementation

UDP

application
process

application
process

application
process

ports

queues

packet
demultiplexing

packet arrives

■ If queue is full, packet is dropped
■ If queue is empty, application process blocks until a message becomes available

Last line of defense
■ UDP also ensures correctness of the message by the use of a checksum

◆ data is checksummed as a sequence of 16 bit integers
◆ the integers are added together using 16 bit ones complement arithmetic
◆ checksum is the ones complement of the result

■ Relatively weak protection against errors, but easily implemented in software, and adequate since
majority of errors are detected previously

checksum(int * buf, int count) {

int sum = 0;

while (count--) {

sum+= *buf++;

if (sum & 0xFFFF0000) {

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}

■ The checksum is over —UDP header—the content of message —protocol number, source IP address,
destination IP address (pseudoheader from IP)—UDPlength field

TCP

■ Reliable, in order delivery of a stream of bytes (each byte has a sequence number)

■ Full duplex protocol, each TCP connection supports a pair of byte streams, one flowing in each
direction

■ Flow control mechanism that allows the receiver (on both ends) to limit how much data the
sender can transmit at a given time

■ Of course, demultiplexing mechanism, like UDP

■ Congestion control mechanism, not for the purpose of keeping the sender from overwhelming the
receiver, but rather to keep the sender from overloading the network

Sliding window

At the heart of TCP is the sliding window algorithm. However, TCP runs over the Internet, not on a
single link. Major differences are:

■ TCP requires a connection establishment/termination similar to link initialization but slightly
different

■ With a single link, RTT is fixed. TCP must deal with variable RTT

◆ different hosts
◆ different times of the day
◆ during a connection

■ Unlike the case of a single link, packets may be reordered as they cross the Internet. TCP has to
be prepared for a very old packet to suddenly show up at receiver, potentially confusing the sliding
window algorithm.

■ Propagation delay and bandwidth are known on a single link; therefore window size is set. TCP
must include a mechanism that each side uses to “learn” what resources (e.g. buffer space) the
other side is able to apply for a connection.

■ TCP has no idea what links will be traversed in the Internet. Congestion control mechanism
needed.

Segments
■ TCP is a byte oriented protocol

◆ sender writes bytes into a TCP connection
◆ receiver reads bytes out of the TCP connection

■ TCP does not, itself, transmit individual bytes

◆ sender generates bytes into buffer (sliding window)
◆ TCP collects enough bytes from the sending process buffer to fill a reasonably sized packet
◆ TCP at the receiving end empties the content of the packet into the receiving process buffer
◆ receiver reads bytes from buffer (sliding window)

■ The packets exchanged between TCP peers are called segments

TCP

sender buffer

TCP

receiver buffer

application process application process

segment segment segment

write
bytes

read
bytes

Segment format

source port

hdrLen advertised window

data

0 16 31

sequence number

request number (acknowledgement)

flags

destination port

0

4 10

checksum urgent pointer

options (variable)

■ TCP’s demux key is the 4-tuple
<source port, source IP, destination port, desti-
nation IP>

■ Sequence number (SN), request number (RN),
and advertised window are used for the sliding
window algorithm, but SN is the sequence num-
ber of the first byte in the segment

■ HdrLen is the length of the header in 32 bit words
■ Flags: SYN, FIN, RESET, PUSH, URG, ACK

◆ SYN and FIN are used to establish and ter-
minate a TCP connection

◆ ACK is set whenever an acknowledgement
must be read

◆ RESET is used by receiver to abort connec-
tion, e.g. receiver confused because it re-
ceived an unexpected segment

■ checksum used same way as for UDP, computer
over the TCP header, the TCP data, and the
pseudoheader.

Connection establishment
■ Similar in concept to link initialization, i.e. the 3-way handshake
■ But TCP does not start at SN = 0
■ Need to protect against two incarnations of the same connection reusing the same sequence

numbers too soon (this is not an issue on a single link).

◆ connection established
◆ few segments exchanged
◆ connection aborted by receiver
◆ segments are still in the network
◆ connection re-established

■ TCP requires each side to select an initial starting SN at random
■ Sequence numbers need to be exchanged when connection is established
■ SYN flag is used and the sequence number field is set
■ The result is a 3-way handshake similar to link initialization

A

B
SYN

SN
=x

SY
N

+A
C

K

SN
=y

 R
N

=x
+1 A

C
K

R
N

=y+1

State diagram for up
(event/action)

down

connect accept

up

Send SYN SN=x SYN SN=x / SYN+ACK SN=y RN=x+1

SYN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1

(usually client) (usually server)

■ What if last ack was lost? The client thinks connection is up but the server thinks it is not up yet

■ What if the client closes connection before the server knows it went up?

State diagram for up
(event/action)

down

connect accept

up

Send SYN SN=x SYN SN=x / SYN+ACK SN=y RN=x+1

SYN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1

(usually client) (usually server)

■ What if last ack was lost? The client thinks connection is up but the server thinks it is not up yet

◆ client starts to send data, so ACK will eventually get to server

■ What if the client closes connection before the server knows it went up?

◆ client can resend last ACK with FIN (connection is still up)

State diagram for down
(event/action)

up

disconnect close

down

Send FIN SN=x FIN SN=x / FIN+ACK SN=y RN=x+1

FIN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1

■ What if last ack was lost? The client thinks connection is down but the server thinks it is not
down yet

■ What if the client opens connection before the server knows it went down?

State diagram for down
(event/action)

up

disconnect close

down

Send FIN SN=x FIN SN=x / FIN+ACK SN=y RN=x+1

FIN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1

■ What if last ack was lost? The client thinks connection is down but the server thinks it is not
down yet

◆ client is sending no more data!

■ What if the client opens connection before the server knows it went down?

◆ no last ACK, connection is gone
◆ maybe it’s another client with the same port (since connection was closed) number and host
◆ if server resends FIN (and delayed), it might be wrongly interpreted as termination

State diagram for down
(event/action)

up

disconnect close

wait

Send FIN SN=x FIN SN=x / FIN+ACK SN=y RN=x+1

FIN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1

down

two segment
lifetimes

Sliding window revisited

The sliding window algorithm is essentially the same with mainly two differences:

■ Flow control: the receiver advertises a window size to the sender (through the TCP header)

■ Protection against wraparound: TCP uses 32 bit long sequence numbers

We will discuss the advertised window first, but for simplicity:

■ Ignore that both buffers and sequence numbers are of some finite size
■ Do not distinguish between a byte’s sequence number and its position in the buffer

SN SN + n – 1

n

RN RN + m – 1

m

Receiver side

■ Let LR be the last byte read by the receiver (delivered to application)
■ Ideally, LR = RN − 1 (receiver is fast enough)
■ Generally, LR ≤ RN − 1

RN

m

LR

slow: LR < RN – 1

m

■ The receiver will advertise a window size of m′ ← m− [(RN − 1)− LR]

Sender side

■ The sender sets its window size to the advertised window n′ ← m
■ Sender cannot send bytes unless window size is n′ > 0
■ If n′ = 0, eventually sender’s buffer fills up, and TCP blocks the sending process.
■ If sender wants to be more cautious, it can set its window size to n← m− (LS − SN + 1), where

LS is the last byte sent by the sender (over the network)

SN LS

m – (LS – SN + 1)

■ In this case, if receiver advertises a window size less or equal to LS − SN + 1 (receiver has not
seen these yet), then sender stops sending immediately

Probing

■ How does the sender know that the advertised window is no longer 0?

◆ the sender is not permitted to send any more data
◆ the receiver sends ACKs in response to received data
◆ no way to discover that advertised window is no longer 0

■ Whenever the receiver advertises a window size of 0, the sender persists in sending a segment with
1 byte of data every so often

◆ these will probably be not accepted at the receiver
◆ but eventually one of these 1 byte segments will trigger a response that reports a non-zero

advertised widow

■ This is called probing, and it is done in this way to simplify the receiver

◆ the receiver simply responds to segments from the sender and never initiates activity on its
own

◆ smart sender/dumb receiver
◆ a similar simplification is the replacement of ACKS and NAKS with RN

Wrap around
■ TCP uses a 32 bit sequence number, we have 232 distinct numbers
■ The window size is a 16 bit number, so the maximum window size is 216 − 1 bytes (≈ 64 KB)
■ 232 >> 2(216 − 1), so theoretically, wrapping around should not be a problem
■ But the ordered delivery condition true on a single link is not satisfied in the Internet!
■ TCP must be prepared for a very old segment to suddenly appear at the receiving side
■ Solution: Packets cannot survive in the Internet for longer than the Maximum Segment Lifetime

MSL, which is 120 seconds.
■ Therefore, we need to make sure that the sequence number does not wrap around within a 120

second period of time
■ How long does it take the sequence number to wrap around?

◆ it depends on the network
◆ e.g. Ethernet: bandwidth = 10Mbps, we need 2

32
×8

10×106 seconds to transmit 232 bytes (to wrap
around). This is 57 min.

■ On faster networks (e.g. 622Mbps and 1.2 Gbps), the time to wrap around is much smaller than
120 seconds.

Window size

How big should the window size W be in bits?

■ The window size should be big enough to use the full capacity of the network
■ If the bandwidth is B, then the sender should be able to send B bps
■ But the sender can only send W bits every RTT + MSS/B seconds, where MSS is the

Maximum Segment Size
■ sender is limited to min(B,W/RTT) (RTT >> MSS/B)

B

W / RTT

RTT

W / B

tr
an

sm
is

si
on

 r
at

e

■ We need RTT≤W/B; therefore, W ≥ RTT ×B
■ TCP can support 64 KB windows only

How does TCP send data?

Why is that an issue?

■ TCP is a byte stream, so every byte has a sequence number
■ But TCP sends bytes in segments
■ How does TCP decide when to send?

◆ TCP uses a Maximum Segment Size (MSS) imposed by the Maximum Transmission Unit
(MTU) allowed by the immediate underlying network (prevents additional segmentation at the
network level)

◆ but should TCP wait to have enough bytes to fill an MSS?
◆ or should it send data immediately?

■ Before we answer this question, why would TCP have few bytes to send

◆ application process is providing few bytes / seconds, e.g. Telnet application sending one
character at a time (small packet problem)

◆ window size is small (silly window syndrome)

■ A solution to the small packet problem is also a solution to the silly window syndrome

Send vs. Wait

■ If TCP sends immediately, then we have too much overhead

◆ e.g. 1 byte of data with 20 bytes of TCP header and 20 bytes of IP header, overhead is 40/1
◆ while this is acceptable on LANs like Ethernet, it is not acceptable on highly congested WANs

■ An alternative is for TCP to wait until it has enough data to fill an MSS, but how much time?

◆ is user on Telnet application generating more characters?
◆ when will the receiver open up the window?
◆ if sender waits too long, it hurts interactive applications like Telnet (imagine you hit return

and nothing happens)
◆ if sender does not wait long enough, silly window syndrome persists

■ Use a timer, say 500 ms. Every time the timer fires, TCP is allowed to send a small segment (less
than MSS)

◆ Problem: Cannot make everyone happy!

Why is a timer bad?

Imagine a user on a Telnet application generating 25 characters, one character every 200 ms

■ LAN with 50 ms RTT

◆ response every 2 or 3 characters
◆ overhead 16/1 (400 bytes overhead)
◆ not a good compromise

■ WAN with 5 sec RTT

◆ responsiveness is not that bad since we have to wait 5 sec for first response
◆ but we still have too many packets congesting the WAN
◆ we should have waited more (but then LAN will be worse)

Nagle’s algorithm

■ We somehow need an adaptive timer
■ Use a self-clocking algorithm at sender

◆ as long as TCP has any data in transit, the sender will receive an ACK
◆ treat this ACK as a timer firing

while more data
if both available data and the window ≥MSS

send a full segment
else

// Stop and Wait
if there is unACKed data in transit

buffer the new data
else

send data in a small segment

■ When window size becomes 0, receiver does not advertise window size > 0 until window size
≥MSS

Revisit the example

Imagine a user on a Telnet application generating 25 characters, one character every 200 ms

■ LAN with 50 ms RTT

◆ since characters are generated every 200 ms, every character will see no data in transit
◆ every character is sent immediately in a small segment
◆ response is fast
◆ overhead is 40/1 again
◆ appropriate for LAN

■ WAN with 5 sec RTT

◆ the first character will see no data in transit
◆ the rest of the characters will wait the ACK
◆ all 24 characters are sent in one segment after the ACK
◆ overhead is 3.2/1 (only 80 bytes overhead)
◆ only 2 packets injected in network
◆ appropriate for WAN

To Nagle or not to Nagle
■ Nagle’s algorithm performs badly when combined with delayed ACKs

◆ The receiver piggybacks the ACK on the response
◆ If there is no response, the receiver waits for up to, say 200ms, and then sends the (now

delayed) ACK

application

Nagle sender

receiver

application

write

response

write read

no response
delayed ack

■ TCP provides a way to disable Nagle’s algorithm (socket TCP option NO DELAY)

socklen_t i=1;

setsocketopt(sock, IPPROTO_TCP, TCP_NODLAY, &i, sizeof(i));

	Link initialization
	Master-slave protocol
	Balanced protocol
	State diagram for up (event/action)
	State diagram for up (event/action)
	State diagram for down (event/action)
	State diagram for down (event/action)
	Transport protocols
	UDP
	Ports
	Port implementation
	Last line of defense
	TCP
	Sliding window
	Segments
	Segment format
	Connection establishment
	State diagram for up (event/action)
	State diagram for up (event/action)
	State diagram for down (event/action)
	State diagram for down (event/action)
	State diagram for down (event/action)
	Sliding window revisited
	Receiver side
	Sender side
	Probing
	Wrap around
	Window size
	How does TCP send data?
	Send vs. Wait
	Why is a timer bad?
	Nagle's algorithm
	Revisit the example
	To Nagle or not to Nagle

