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1 Introduction

We started our discussion of the DLC layer by saying that it is responsible for reliable
transmission of packets over a single link, which means that every packet is deliv-
ered once, only once, without errors, and in order. To achieve this goal, the DLC had
to detect errors using framing and parity check codes. Now assuming that the DLC
can detect errors, the question becomes how to correct these errors and how to make
sure that each packet is delivered once, only once, and in order?

The delivery once and ordering properties can be solved by including a sequence
number in the packet header (in addition to possibly other framing information). The
DLC can then determine whether a duplicate frame or an out of order frame is received,
and ignores any such frame. So the essential problem appears to be error correction.

The last statement may give the wrong impression that the problem of reliable
communication is one sided. Most of the times, errors cannot be corrected at the
receiving side; so if the receiver declares an error upon receiving a frame, the sender
must resend that frame sometime in the future. The receiver may have to request
such retransmission. Moreover, if the receiver does not receive any frames, then noth-
ing needs to be corrected. But for reliable communication to exist, the sender must
guarantee the delivery of frames. While on a single link, lost generally means received
with errors, if frames can be lost (for whatever reason), the receiver may have to
acknowledge the receipt of frames in some way.

Therefore, the problem of reliable communication is a coordination problem among
both the sender and the receiver DLCs. At any point in time, both DLCs must have
a clear view of what has happened so far. But it appears from above that by simply
acknowledging the receipt of frames (those that are not duplicates, are in order, and
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contain no errors), the receiver can instruct the sender of the next frame to be sent.
The solution however is not that simple. To appreciate the difficulty of the problem,
let us consider a classical problem known as the coordinated attack problem.

2 The coordinated attack problem

There are three armies, two colored blue, and one colored red. The red army separates
the two blue armies. If the blue armies attack simultaneously, they win, but if they
attack separately, the red army wins. The only communication between the blue
armies is by sending messengers through the red army lines, but there is a possibility
that any such messenger will be captured, causing the message to go undelivered. How
should the blue armies coordinate their attack?

Figure 1: The coordinated attack problem

Let us state this problem formally. Denote the two armies by A and B. Both A
and B make their own initial decisions, i.e. 1 (let’s attack) or 0 (let’s not attack). A
and B can then exchange messages. Every message can be lost. A and B must finally
agree on a decision, and the final agreement must be on one of the decisions made
initially (why?). The goal is to find an algorithm that terminates after a finite number
of messages and that solves the agreement problem.

What may be surprising is that no such algorithm exists! This fact is not hard to
prove. The proof is by contradiction. Assume that such an algorithm exists. Execute
this algorithm on an instance where both A and B initially decide 1. Then they must
agree on 1 after a finite number of messages.
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Figure 2: A and B agree on 1 after a finite number of messages

Now assume that the last message from A to B is lost. The execution of the
algorithm looks the same to A. Therefore, A decides 1. B must also decide 1.
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Figure 3: Last message from A to B is lost. A and B still agree on 1.

Now assume that the last message from B to A is lost. The execution of the
algorithm looks the same to B. Therefore, B decides 1. A must also decide 1.
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Figure 4: Last message from B to A is lost. A and B still agree on 1.

Repeat the argument until all messages are lost. Both A and B still decide 1.
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Figure 5: All messages are lost. A and B still agree on 1.

Now assume that B’s original decision is changed to 0. The execution of the
algorithm looks the same to A. Therefore, A decides 1. B must also decide 1.
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Figure 6: B’s initial decision changes to 0. A and B still agree on 1.

Now assume that A’s original decision is changed to 0. The execution of the
algorithm looks the same to B. Therefore, B decides 1. A must also decide 1.

0 0

A B

Figure 7: A’s initial decision changes to 0. A and B still agree on 1.

We reach a contradiction! Therefore, such an algorithm does not exist.

So how can we agree on anything in the presence of message loss? The impossibility
of coordinated attack is a result of the setting itself. For instance, if there is a non-zero
probability that a messenger from the blue army will not be captured, a message will
eventually get through the red army lines. We can then find an algorithm to ensure
that both armies attack simultaneously with high probability (can you think of one?).

For most problems of communication, we assume that “eventually something good
will happen”. Therefore, we assume that there is a probability p > 0 that a frame will
be received without errors. The sender might be required to wait for a confirmation
from the receiver of this event. But there is no point in time where both the sender
and the receiver have complete knowledge of the “state of the world”. That would
be equivalent to require both the sender and the receiver to know the following fact
before proceeding further with any communication.

“I know that he knows that I know that he knows...

that the first packet was successfully communicated′′

In other words, we do not require them to agree that the first packet was success-
fully delivered before starting on the next one. The following pattern of communication
is very common: A sends a packet ... A does not know if B got the packet... A may
resend... B sends an acknowledgment... B does not know that A got the ack... B
may resend... A sends another packet upon receiving the ack... A does not know that



B got the packet... A may resend... B sends an acknowledgment... B does not know
that A got the ack... B may resend...

This pattern of communication falls under the general strategy of automatic repeat
request (ARQ), in which the receiving DLC detects frames with errors and then re-
quests, in one way or another, the sender to repeat the information in those erroneous
frames. That’s how error correction is done. We will study different ARQ strategies.

3 Stop and wait ARQ

Let A be the sender and B be the receiver. The basic idea of Stop and wait ARQ is
that A sends a frame to B and then waits for an acknowledgment (called ack) from B
before sending another frame. When we start thinking about this strategy in detail, we
realize that we have a problem. For instance, the frame or the ack may be lost. On a
single link, this generally happens because of errors (so there is no physical loss here).
While an ack with error may still be regarded by A as some kind of acknowledgment
(though unlikely), if the frame from A to B is lost, B will never send the ack. Then A
will wait forever. One possible remedy is to make B send a negative acknowledgment
(called nak) upon receiving a frame with errors. In this case, A will never have to wait
indefinitely. But regardless, A may receive the ack or the nak with errors (a frame
from B to A), and hence cannot determine which is which. A solution to this problem
is for A to use a timeout. If a nak is received, or an ack is not received within a timeout
period, A resends the frame. Unfortunately, this does not correctly solve the problem
as illustrated by the following figure.

A

B

packet

Ack

timeout

which packet?

time at A

time at B

Figure 8: B cannot tell which packet is being received

Referring to Figure 8 above, one might think that B could simply compare the
packets to resolve the issue of a duplicate packet. However, as far as the DLC is
concerned, packets are arbitrary bit strings and the first and second packets could be
identical.

A can add a sequence number SN to the frame header. B can use the sequence
number to tell which packet is being received. Unfortunately, even the use of sequence
numbers is not quite enough to ensure correct operation. The figure below illustrates
the problem.
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Figure 9: × means the frame arrives in error. A thinks that the second ack
from B is for frame 1.

Therefore, acks and naks must also contain sequence numbers. This however makes
naks redundant. For instance, B can send an ack with a request number RN of the
frame to be received next in sequence. If B receives a frame with errors, then RN
remains the same. There are many ways in which B can send an ack with RN :

• upon receipt of each frame

• in periodic intervals

• at arbitrary times

• piggyback RN in the frame header for packets going from B to A

packet CRCSN RN

Figure 10: Piggyback RN

The final algorithm for Stop and wait ARQ is shown below for both the sender
and the receiver:

A
SN ← 0
while (more packets)

accept one packet from upper layer
ack ← false
while (!ack)

send packet in frame to B with sequence number SN
wait(timeout)
if received frame from B with RN > SN

SN ← RN
ack ← true



B
RN ← 0
while (true)

if frame with SN = RN received
release packet to upper layer
RN ← RN + 1

with probability q > 0 send frame to A with piggybacked RN

The correctness of such a distributed algorithm is usually proved in two parts:

• safety: the algorithm never produces an incorrect result

• liveness: the algorithm continue forever to produce results (it never enters a
deadlock in which no further progress is possible)

The safety property is self evident for this algorithm: B releases all packets in order
(using a proof by induction if one wants to be formal). This however is guaranteed
only because B can always detect errors. The liveness property is given by the fact
that with a probability p > 0, a transmitted frame is received without errors, and
with probability q > 0, B periodically sends its RN to A. Let us prove the liveness
property.

• Assume that i is the value of SN at some time t1

• Let t2 be the time at which packet i is released to the upper layer (t2 = ∞ if
this event never occurs)

• let t3 be the time at which SN is increased beyond i

We will show that t2 < t3 and that t3 is finite given t1 is finite. This is sufficient
to demonstrate liveness using induction on i. Note that this does not prove safety, e.g.
try to construct an example where t2 < t3 and t3 is finite, and packets are delivered
out of order.

Let RN(t) and SN(t) be the values of RN and SN at time t, respectively.
By definition of the algorithm, and the fact that both RN(t) and SN(t) are non-

decreasing in t, we have
SN(t) ≤ RN(t)

By definition of t2 and t3, RN(t) is increased beyond i at t2 and SN(t) is increased
beyond i at t3. Since SN(t) ≤ RN(t), if follows that t2 < t3. Note that t1 < t3 by
definition, but it is possible that t2 < t1 (why?).

If t1 < t2, then RN(t1) ≤ i by the safety property (why?). Since SN(t1) = i and
SN(t) ≤ RN(t), if follows that SN(t1) = RN(t1) = i. A continues to transmit frame i
from t1 until t3. Therefore, the first error-free reception of frame i after t1 will release
the packet. Since t2 < t3 and p > 0, the time from t1 to t2 is finite. Therefore, either
t2 < t1 or the time from t1 to t2 in finite. Now we show that the time from t2 to t3 is
finite, which proves that t3 is finite given t1 is finite. With probability q, B (whether
t1 < t2 or vice versa) continues to transmit frames carrying RN ≥ i + 1 from time t2
until some such frame is received error-free at A at time t3. Since p > 0 and q > 0,
the time from t2 to t3 is finite.



3.1 Bounded sequence numbers

One problem of the above algorithm lies in the fact that both SN and RN are un-
bounded. Since the size of the frame header must be finite, SN and RN will eventually
not fit in the frame header. Therefore, it is practical to send these numbers modulo
some integer. The question becomes what modulus is sufficient to preserve the cor-
rectness of the algorithm? Without a proper assumption on the communication, no
modulus p will be sufficent. Consider the following scenario: A sends a frame with
SN = 0 which is delayed. A times out and resends the frame with SN = 0. B receives
the frame and sends RN = 1. A sends a frame with SN = 1. B receives the frame and
sends RN = 2. This is repeated until A sends a frame with SN = p − 1. B receives
the frame and sends RN = 0 (p mod p). B receives the initial frame with SN = 0
that has been delayed. Obviously, regardless of the value of p, B accepts the wrong
frame. Therefore, while we may assume that frames can be lost, those that eventually
arrive are assumed to arrive in the same order as transmitted. This assumption is not
acceptable for general networks, but is is definitely true on a single link, and we may
call it the FIFO (First In First Out) property of the link.

A

B

0 1 2 3 4

Figure 11: Ordered transmission of frames showing losses (frame never arrives
denoted by short arrow) and errors (frame arrives with error denoted by ×)

Proposition (FIFO): If B receives a frame with sequence number SN at time t,
then RN(t)− 1 ≤ SN ≤ RN(t). Similarly, if A receives a frame with ack number RN
at time t, then SN(t) ≤ RN ≤ SN(t) + 1.

We will prove a more general proposition in the next section. Based on this propo-
sition, both the sender and the receiver need to distinguish between two values at any
time. Therefore, sending SN and RN modulo 2 is sufficient to resolve any ambiguity.
Here’s the modified algorithm:

A
SN ← 0
while (more packets)

accept one packet from upper layer
ack ← false
while (!ack)

send packet in frame to B with sequence number SN
wait(timeout)
if received frame from B with RN 6= SN

SN ← RN
ack ← true



B
RN ← 0
while (true)

if frame with SN = RN received
release packet to upper layer
RN ← (RN + 1) mod 2

with probability q > 0 send frame to A with piggybacked RN

3.2 Throughput of stop and wait ARQ

With stop and wait ARQ, B must wait for a frame, and A must wait for an ack.
Therefore, one frame is sent from A to B per approximately one RTT. Recall the
definition of RTT to be the Round Trip Time for exchanging small messages, which
is approximately twice the propagation delay (assuming no queuing delays). For in-
stance, if the bandwidth of the link is 1.5 Mbps, RTT is 45 ms, and the frame size is
1 KB, then we send 1024 × 8 bits every 0.045 + (1024 × 8)/(1.5 × 106) seconds, i.e.
≈ 0.15 Mbps. This is only 10% of the link capacity. Therefore, we would like A to
send up to 10 frames, or more generally up to n ≈ 1+ RTT×Bandwidth

frame size
frames 1, before

having to wait for the first ack in order to fully utilize the link. The following figure
compares the two scenarios.
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B

A

B

n

½ RTT

Figure 12: One frame (stop and wait) vs. n frames per RTT

4 Sliding window ARQ

Based on the previous section, we would like the sender to be ready to transmit the
nth frame at pretty much the same moment that the ack for the first frame arrives.
Therefore, the sender keeps a window of frames of size n to hold frames with sequence
numbers SN to SN + n− 1.

The sender can transmit any of these frames before receiving a frame with RN >
SN . As before, when the sender receives a frame with RN > SN , it sets SN to the
received RN by sliding the window, hence the name of this ARQ strategy.

1That’s how many frames we can send during RTT + frame size
Bandwidth

time



SN SN + n – 1

n

Figure 13: Sender window

Similarly, the receiver keeps a window of frames that is willing to accept (but not
necessarily deliver the packet to the upper layer). Therefore, if the window size is m,
the receiver can accept any frame with sequence number RN to RN + m − 1 before
receiving a frame with SN = RN .

RN RN + m – 1

m

Figure 14: Receiver window

Upon receiving a frame with SN = RN , the receiver sets RN to RN +r by sliding
the window, such that all frames with sequence numbers RN to RN + r−1 have been
received, and delivers the corresponding packets to the upper layer. We will assume
that m ≤ n. Values of m = 1 (go back n) and m = n (selective repeat) are most
common in the literature.

Here’s the algorithm for the sliding window ARQ for both the sender and the
receiver:

A
SN ← 0
while (more packets)

accept packets from upper layer into window
ack ← false
while (!ack)

send packets in frames to B with sequence numbers SN to SN + n− 1
wait(timeout)
if received frame from B with RN > SN

SN ← RN (slide the window)
ack ← true



B
RN ← 0
while (true)

if frame with SN ∈ [RN, RN + m] received
release packets RN to RN + r − 1 to upper layer such that
all r frames are received
RN ← RN + r (slide the window)

with probability q > 0 send frame to A with piggybacked RN

To prove the correctness of the sliding window algorithm, we have to prove both
the safety and the liveness properties. The proof of safety is trivial since the receiver
releases packets in order (assumeing it can always detect errors). The proof of liveness
is exactly the same as for stop and wait ARQ (if fact, a slightly simpler proof could
have been made for stop and wait ARQ).

4.1 Implementation using finite buffers

For simplicity of illustration, we considered a finite size window sliding on an infinite
buffer of frames. At least that’s how we pictured it in Figures 13 and 14 of the sliding
window ARQ. In practice, however, only finite buffers are available. This sould be
sufficient since at most n (or m ≤ n) frames need to be stored at any time. Therefore,
given a buffer buf of size n, the sender can store a frame with sequence number SN in
buf [SN mod n]. Similarly, given a buffer buf of size m, the receiver can sotre a frame
with sequence number SN in buf [SN mod m]. Note that given the rule by which
the sender (receiver) accepts frames in its window, two frames with sequence numbers
SN1 and SN2 cannot satisfy SN1 mod n = SN2 mod n (SN1 mod m = SN2 mod m).
The figure below shows some examples.

12 13 14 15

0 1 2 3 4 5 6 7

16

17SN

n = 8

16 14

0 1 2 3 4

13SN

m = 5, RN = 12

Figure 15: Buffer implementation of windows

Here’s a more detailed implementation of the sliding window algorithm using this
idea:



A
SN ← 0
while (more packets)

if buf not full
accept a packet and store the new frame in the buffer
ack ← false
while (!ack)

send packets in frames to B with sequence numbers SN to SN + n− 1
wait(timeout)
if received a frame from B with RN > SN

free buf [SN mod n] . . . buf [(RN − 1) mod n]
SN ← RN (slide the window)
ack ← true

B
RN ← 0
while (true)

if frame with SN ∈ [RN, RN + m− 1] received
accept the frame and store it in buf [SN mod m]
if SN = RN

release packets RN to RN + r − 1 to upper layer such that
buf [(SN + i) mod m] contains frame SN + i, i = 0 . . . r − 1
free buf [SN mod m] . . . buf [(SN + r) mod m]
RN ← RN + r (slide the window)

with probability q > 0 send a frame to A with piggybacked RN

4.2 Bounded sequence numbers (again...)

Here again we suffer from unbounded sequence numbers for SN and RN . As before,
assuming the FIFO property holds, we can send SN and RN modulo some integer p.
For stop and wait ARQ, p ≥ 2 was a sufficient modulus. For sliding window ARQ, we
will se that p needs to be at least equal to n + m. Note that stop and wait ARQ is a
special case of sliding window ARQ where n = m = 1. We start by generalizing the
proposition in the previous section:

Proposition (FIFO): If B receives a frame with sequence number SN at time t,
then RN(t) − n ≤ SN ≤ RN(t) + n − 1. Similarly, if A receives a frame with ack
number RN at time t, then SN(t) ≤ RN ≤ SN(t) + n.

To prove the first part of the proposition, consider the time t0 < t at which the
received frame SN was transmitted. We know from the algorithm that

SN(t0) ≤ SN ≤ SN(t0) + n− 1 (window)

Furthermore,
SN(t0) ≤ SN(t) ≤ RN(t) (non-decreasing)

Finally, frame SN(t0)+n cannot have been sent before t0, and so by the FIFO property
it cannot not have been received before t:

RN(t) ≤ SN(t0) + n (FIFO)



Putting these inequalities together, we obtain:

RN(t)− n ≤ SN ≤ RN(t) + n− 1

To prove the second part of the proposition, consider the time t0 < t at which the
received ack RN was transmitted. Frame SN(t) + n cannot have been sent before t,
so it certainly cannot have been received before t0. Therefore,

RN ≤ SN(t) + n (window)

Finaly, because of the FIFO property (think why):

SN(t) ≤ RN (FIFO)

Putting these inequalities together, we obtain:

SN(t) ≤ RN ≤ SN(t) + n

Based on the above proposition, the sender needs to distinguish between n + 1
values at any time. On the other hand, the receiver needs to dinstinguish between 2n
values at any time. However, a closer look will reveal that the receiver will only need
to distinguish between n + m values at any time, because the receiver is only required
to check if SN ∈ [RN(t), RN(t)+ m− 1] as illustrated in the figure below. Therefore,
a modulus of p ≥ n + m is sufficient (1 ≤ m ≤ n).

n

m

n

RN(t)

Figure 16: Ok for last n−m SN numbers to wrap around modulo p = m + n

We will mention one last technicality about the choice of p in terms of the finite
buffer implementation. Consider two sequence numbers SN1 and SN2. We have
a problem if (SN1 mod p) mod m = (SN2 mod p) mod m, i.e. both frames should
be stored in the same buffer location. Before adding the p modulus, this was not
a problem because SN1 mod m = SN2 mod m means that |SN1 − SN2| ≥ m and,
therefore, one of the frames will not be accepted into the buffer. With (SN1 mod
p) mod m = (SN2 mod p) mod m, it is possible that |SN1 − SN2| < m. One way
to solve this problem is to choose for the value of p a multiple of m, because then
(SN mod p) mod m = SN mod m. The same applies for the sender, so p should also
be a multiple of n. Since we need p ≥ n + m, we can choose p = max(2n, lcm(n, m)).
An alternative would be to use a circular queue implementation of the buffer and keep
track of the head and tail (that’s how it is practically done).
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